

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	ndeflib 0.1.1 documentation

NDEF Decoder and Encoder for Python

The ndeflib is a Python package for parsing and generating NFC Data Exchange
Format (NDEF) messages. It is licensed under the ISCL [http://choosealicense.com/licenses/isc/], hosted on GitHub [https://github.com/nfcpy/ndeflib]
and can be installed from PyPI [https://pypi.python.org/pypi/ndeflib].

>>> import ndef
>>> hexstr = '9101085402656e48656c6c6f5101085402656e576f726c64'
>>> octets = bytearray.fromhex(hexstr)
>>> for record in ndef.message_decoder(octets): print(record)
NDEF Text Record ID '' Text 'Hello' Language 'en' Encoding 'UTF-8'
NDEF Text Record ID '' Text 'World' Language 'en' Encoding 'UTF-8'
>>> message = [ndef.TextRecord("Hello"), ndef.TextRecord("World")]
>>> b''.join(ndef.message_encoder(message)) == octets
True

Documentation

	Decoding and Encoding
	Message Decoder

	Message Encoder

	Record Class

	Known Record Types
	Text Record

	URI Record

	Smartposter Record

	Device Information Record

	Connection Handover

	Adding Private Records
	Record with no Payload

	Example Temperature Record

	Type Length Value Record

 Copyright 2016-2017, Stephen Tiedemann.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	ndeflib 0.1.1 documentation

NDEF Decoding and Encoding

NDEF (NFC Data Exchange Format), specified by the NFC Forum [http://nfc-forum.org/], is a binary
message format used to encapsulate application-defined payloads exchanged
between NFC Devices and Tags. Each payload is encoded as an NDEF Record with
fields that specify the payload size, payload type, an optional payload
identifier, and flags for indicating the first and last record of an NDEF
Message or tagging record chunks. An NDEF Message is simply a sequence of one or
more NDEF Records where the first and last record are marked by the Message
Begin and End flags.

The ndef package interface for decoding and encoding of NDEF Messages
consists of the message_decoder() and message_encoder() functions
that both return generators for decoding octets into ndef.Record
instances or encoding ndef.Record instances into octets. Known
record types are decoded into instances of their implementation
class and can be directly encoded as part of a message.

Message Decoder

	
ndef.message_decoder(stream_or_bytes, errors='strict', known_records=Record._known_types)

	Returns a generator function that decodes NDEF Records from a file-like,
byte-oriented stream or a bytes object given by the stream_or_bytes
argument. When the errors argument is set to ‘strict’ (the default), the
decoder expects a valid NDEF Message with Message Begin and End flags set for
the first and last record and decoding of known record types will fail for
any format errors. Minor format errors are accepted when errors is set to
‘relax’. With errors set to ‘ignore’ the decoder silently stops when a
non-correctable error is encountered. The known_records argument provides
the mapping of record type strings to class implementations. It defaults to
all global records implemented by ndeflib or additionally registered from
user code. It’s main use would probably be to force decoding into only
generic records with known_records={}.

	Parameters:	
	stream_or_bytes (byte stream or bytes object) – message data octets

	errors (str [https://docs.python.org/3.5/library/stdtypes.html#str]) – error handling strategy, may be ‘strict’, ‘relax’ or ‘ignore’

	known_records (dict [https://docs.python.org/3.5/library/stdtypes.html#dict]) – mapping of known record types to implementation classes

	Raises:	ndef.DecodeError – for data format errors (unless errors is set to ‘ignore’)

>>> import ndef
>>> octets = bytearray.fromhex('910303414243616263 5903030144454630646566')
>>> decoder = ndef.message_decoder(octets)
>>> next(decoder)
ndef.record.Record('urn:nfc:wkt:ABC', '', bytearray(b'abc'))
>>> next(decoder)
ndef.record.Record('urn:nfc:wkt:DEF', '0', bytearray(b'def'))
>>> next(decoder)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
StopIteration
>>> message = list(ndef.message_decoder(octets))
>>> len(message)
2

Message Encoder

	
ndef.message_encoder(message=None, stream=None)

	Returns a generator function that encodes ndef.Record objects into
an NDEF Message octet sequence. The message argument is either an iterable
of records or None, if message is None the records must be sequentially
send to the encoder (as for any generator the first send value must be None,
specific to the message encoder is that octets are generated for the previous
record and a final None value must be send for the last record octets). The
stream argument controls the output of the generator function. If stream
is None, the generator yields a bytes object for each encoded record.
Otherwise, it must be a file-like, byte-oriented stream that receives the
encoded octets and the generator yields the number of octets written per
record.

	Parameters:	
	message (iterable or None) – sequence of records to encode

	stream (byte stream or None) – file-like output stream

	Raises:	ndef.EncodeError – for invalid record parameter values or types

>>> import ndef
>>> record1 = ndef.Record('urn:nfc:wkt:ABC', '1', b'abc')
>>> record2 = ndef.Record('urn:nfc:wkt:DEF', '2', b'def')
>>> encoder = ndef.message_encoder()
>>> encoder.send(None)
>>> encoder.send(record1)
>>> encoder.send(record2)
b'\x99\x03\x03\x01ABC1abc'
>>> encoder.send(None)
b'Y\x03\x03\x01DEF2def'
>>> message = [record1, record2]
>>> b''.join((ndef.message_encoder(message)))
b'\x99\x03\x03\x01ABC1abcY\x03\x03\x01DEF2def'
>>> list((ndef.message_encoder(message, open('/dev/null', 'wb'))))
[11, 11]

Record Class

	
class ndef.Record(type='', name='', data=b'')

	This class implements generic decoding and encoding of an NDEF Record and is
the base for all specialized record type classes. The NDEF Record Payload
Type encoded by the TNF (Type Name Format) and TYPE field is represented by a
single type string argument:

Empty (TNF 0)

An Empty record has no TYPE, ID, and PAYLOAD fields. This is set if the
type argument is absent, None, or an empty string. Encoding ignores
whatever is set as name and data, producing just the short length
record b'\x10\x00\x00'.

NFC Forum Well Known Type (TNF 1)

An NFC Forum Well Known Type is a URN (RFC 2141 [https://tools.ietf.org/html/rfc2141.html]) with namespace
identifier (NID) nfc and the namespace specific string (NSS) prefixed
with wkt:. When encoding, the type is written as a relative-URI
(cf. RFC 3986 [https://tools.ietf.org/html/rfc3986.html]), omitting the NID and the prefix. For example, the type
urn:nfc:wkt:T is encoded as TNF 1, TYPE T.

Media-type as defined in RFC 2046 (TNF 2)

A media-type follows the media-type grammar defined in RFC 2046 [https://tools.ietf.org/html/rfc2046.html].
Records that carry a payload with an existing, registered media type should
use this record type. Note that the record type indicates the type of the
payload; it does not refer to a MIME message that contains an entity of the
given type. For example, the media type ‘image/jpeg’ indicates that the
payload is an image in JPEG format using JFIF encoding as defined by
RFC 2046 [https://tools.ietf.org/html/rfc2046.html].

Absolute URI as defined in RFC 3986 (TNF 3)

An absolute-URI follows the absolute-URI BNF construct defined by
RFC 3986 [https://tools.ietf.org/html/rfc3986.html]. This type can be used for payloads that are defined by
URIs. For example, records that carry a payload with an XML-based message
type may use the XML namespace identifier of the root element as the record
type, like a SOAP/1.1 message may be
http://schemas.xmlsoap.org/soap/envelope/.

NFC Forum External Type (TNF 4)

An NFC Forum External Type is a URN (RFC 2141 [https://tools.ietf.org/html/rfc2141.html]) with namespace
identifier (NID) nfc and the namespace specific string (NSS) prefixed
with ext:. When encoding, the type is written as a relative-URI
(cf. RFC 3986 [https://tools.ietf.org/html/rfc3986.html]), omitting the NID and the prefix. For example, the type
urn:nfc:ext:nfcpy.org:T will be encoded as TNF 4, TYPE nfcpy.org:T.

Unknown (TNF 5)

The Unknown record type indicates that the type of the payload is
unknown, similar to the application/octet-stream media type. It is set
with the type argument unknown and encoded with an empty TYPE field.

Unchanged (TNF 6)

The Unchanged record type is used for all except the first record in a
chunked payload. It is set with the type argument unchanged and
encoded with an empty TYPE field.

The type argument sets the final value of the type attribute, which
provides the value only for reading. The name and data argument set the
initial values of the name and data attributes. They can both
be changed later.

	Parameters:	
	type (str [https://docs.python.org/3.5/library/stdtypes.html#str]) – final value for the type attribute

	name (str [https://docs.python.org/3.5/library/stdtypes.html#str]) – initial value for the see name attribute

	data (bytes [https://docs.python.org/3.5/library/functions.html#bytes]) – initial value for the data attribute

	
type

	The record type is a read-only text string set either by decoding or
through initialization.

	
name

	The record name is a text string that corresponds to the NDEF Record ID
field. The maximum capacity is 255 8-bit characters, converted in and out
as latin-1.

	
data

	The record data is a bytearray with the sequence of octets that correspond
to the NDEF Record PAYLOAD field. The attribute itself is readonly but the
bytearray content can be changed. Note that for derived record classes
this becomes a read-only bytes object with the content encoded from the
record’s attributes.

	
MAX_PAYLOAD_SIZE

	This is a class data attribute that restricts the decodable and encodable
maximum NDEF Record PAYLOAD size from the theoretical value of up to 4GB
to 1MB. If needed, a different value can be assigned to the record class:
ndef.Record.MAX_PAYLOAD_SIZE = 100*1024

	
classmethod register_type(record_class)

	Register a derived record class as a known type for decoding. This creates
an entry for the record_class type string to be decoded as a record_class
instance. Beyond internal use this is needed for adding private
records.

 Copyright 2016-2017, Stephen Tiedemann.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	ndeflib 0.1.1 documentation

Known Record Types

The ndef package implements special decoding and encoding for a number of
known record types.

	Text Record

	URI Record

	Smartposter Record

	Device Information Record

	Connection Handover
	Handover Request Record

	Handover Select Record

	Handover Mediation Record

	Handover Initiate Record

	Handover Carrier Record

 Copyright 2016-2017, Stephen Tiedemann.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	ndeflib 0.1.1 documentation

 	Known Record Types

Text Record

The NDEF Text Record is a well-known record type defined by the NFC Forum [http://nfc-forum.org/]. It
carries a UTF-8 or UTF-16 encoded text string with an associated IANA language
code identifier.

	
class ndef.TextRecord(text='', language='en', encoding='UTF-8')

	A TextRecord is initialized with the actual text content, an
ISO/IANA language identifier, and the desired transfer encoding UTF-8 or
UTF-16. Default values are empty text, language code ‘en’, and ‘UTF-8’
encoding.

	Parameters:	
	text (str [https://docs.python.org/3.5/library/stdtypes.html#str]) – initial value for the text attribute, default ‘’

	language (str [https://docs.python.org/3.5/library/stdtypes.html#str]) – initial value for the language attribute, default ‘en’

	encoding (str [https://docs.python.org/3.5/library/stdtypes.html#str]) – initial value for the encoding attribute, default ‘UTF-8’

	
type

	The Text Record type is urn:nfc:wkt:T.

	
name

	Value of the NDEF Record ID field, an empty str [https://docs.python.org/3.5/library/stdtypes.html#str] if not set.

	
data

	A bytes [https://docs.python.org/3.5/library/functions.html#bytes] object containing the NDEF Record PAYLOAD encoded from the
current attributes.

	
text

	The decoded or set text string value.

	
language

	The decoded or set IANA language code identifier.

	
encoding

	The transfer encoding of the text string. Either ‘UTF-8’ or ‘UTF-16’.

>>> import ndef
>>> record = ndef.TextRecord("Hallo Welt", "de")
>>> octets = b''.join(ndef.message_encoder([record]))
>>> print(list(ndef.message_decoder(octets))[0])
NDEF Text Record ID '' Text 'Hallo Welt' Language 'de' Encoding 'UTF-8'

 Copyright 2016-2017, Stephen Tiedemann.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	ndeflib 0.1.1 documentation

 	Known Record Types

URI Record

The NDEF URI Record is a well-known record type defined by the NFC Forum [http://nfc-forum.org/]. It
carries a, potentially abbreviated, UTF-8 encoded Internationalized Resource
Identifier (IRI) as defined by RFC 3987 [https://tools.ietf.org/html/rfc3987.html]. Abbreviation covers certain prefix
patterns that are compactly encoded as a single octet and automatically expanded
when decoding. The UriRecord class provides both access attributes for decoded
IRI as well as a converted URI (if a netloc part is present in the IRI).

	
class ndef.UriRecord(iri='')

	The UriRecord class decodes or encodes an NDEF URI Record. The
UriRecord.iri attribute holds the expanded (if a valid abbreviation code
was decoded) internationalized resource identifier (IRI). The UriRecord.uri
attribute is a converted version of the IRI. Conversion is applied only for
IRI’s that split with a netloc component. A converted URI contains only ASCII
characters with an IDNA encoded netloc component and percent-encoded path,
query and fragment components.

	Parameters:	iri (str [https://docs.python.org/3.5/library/stdtypes.html#str]) – initial value for the iri attribute, default ‘’

	
type

	The URI Record type is urn:nfc:wkt:U.

	
name

	Value of the NDEF Record ID field, an empty str [https://docs.python.org/3.5/library/stdtypes.html#str] if not set.

	
data

	A bytes [https://docs.python.org/3.5/library/functions.html#bytes] object containing the NDEF Record PAYLOAD encoded from the
current attributes.

	
iri

	The decoded or set internationalized resource identifier, expanded if an
abbreviation code was used in the record payload.

	
uri

	The uniform resource identifier translated from the UriRecord.iri attribute.

>>> import ndef
>>> record = ndef.UriRecord("http://www.hääyö.com/~user/")
>>> record.iri
'http://www.hääyö.com/~user/'
>>> record.uri
'http://www.xn--hy-viaa5g.com/%7Euser/'
>>> record = ndef.UriRecord("http://www.example.com")
>>> b''.join(ndef.message_encoder([record]))
b'\xd1\x01\x0cU\x01example.com'

 Copyright 2016-2017, Stephen Tiedemann.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	ndeflib 0.1.1 documentation

 	Known Record Types

Smartposter Record

The NFC Forum [http://nfc-forum.org/] Smart Poster Record Type Definition defines a structure that
associates an Internationalized Resource Identifier (or Uniform Resource
Identifier) with various types of metadata. For a user this is most noteably the
ability to attach descriptive text in different languages as well as image data
for icon rendering. For a smartposter application this is a recommendation for
processing as well as resource type and size hints to guide a strategy for
retrieving the resource.

	
class ndef.SmartposterRecord(resource, title=None, action=None, icon=None, resource_size=None, resource_type=None)

	Initialize a SmartposterRecord instance. The only required argument is the
Internationalized Resource Identifier resource, all other arguments are
optional metadata.

	Parameters:	
	resource (str [https://docs.python.org/3.5/library/stdtypes.html#str]) – Internationalized Resource Identifier

	title (str or dict) – English title str [https://docs.python.org/3.5/library/stdtypes.html#str] or dict [https://docs.python.org/3.5/library/stdtypes.html#dict] with language keys and title values

	action (str or int) – assigns a value to the action attribute

	icon (bytes or dict) – PNG data bytes [https://docs.python.org/3.5/library/functions.html#bytes] or dict [https://docs.python.org/3.5/library/stdtypes.html#dict] with {icon-type: icon_data} items

	resource_size (int [https://docs.python.org/3.5/library/functions.html#int]) – assigns a value to the resource_size attribute

	resource_type (str [https://docs.python.org/3.5/library/stdtypes.html#str]) – assigns a value to the resource_type attribute

	
type

	The Smartposter Record type is urn:nfc:wkt:Sp.

	
name

	Value of the NDEF Record ID field, an empty str [https://docs.python.org/3.5/library/stdtypes.html#str] if not set.

	
data

	A bytes [https://docs.python.org/3.5/library/functions.html#bytes] object containing the NDEF Record PAYLOAD encoded from the
current attributes.

	
resource

	Get or set the Smartposter resource identifier. A set value is interpreted
as an internationalized resource identifier (so it can be unicode). When
reading, the resource attribute returns a UriRecord which can be
used to set the UriRecord.iri and UriRecord.uri directly.

	
title

	The title string for language code ‘en’ or the first title string that was
decoded or set. If no title string is available the value is None [https://docs.python.org/3.5/library/constants.html#None]. The
attribute can not be set, use set_title().

	
titles

	A dictionary of all decoded or set titles with language str [https://docs.python.org/3.5/library/stdtypes.html#str] keys and
title str [https://docs.python.org/3.5/library/stdtypes.html#str] values. The attribute can not be set, use set_title().

	
set_title(title, language='en', encoding='UTF-8')

	Set the title string for a specific language which defaults to ‘en’. The
transfer encoding may be set to either ‘UTF-8’ or ‘UTF-16’, the default is
‘UTF-8’.

	
action

	Get or set the recommended action for handling the Smartposter resource. A
set value may be ‘exec’, ‘save’, ‘edit’ or an index thereof. A read value
is either one of above strings or None [https://docs.python.org/3.5/library/constants.html#None] if no action value was decoded or
set.

	
icon

	The image data bytes [https://docs.python.org/3.5/library/functions.html#bytes] for an ‘image/png’ type smartposter icon or the
first icon decoded or added. If no icon is available the value is
None [https://docs.python.org/3.5/library/constants.html#None]. The attribute can not be set, use add_icon().

	
icons

	A dictionary of icon images with mime-type str [https://docs.python.org/3.5/library/stdtypes.html#str] keys and icon-data
bytes [https://docs.python.org/3.5/library/functions.html#bytes] values. The attribute can not be set, use add_icon().

	
add_icon(icon_type, icon_data)

	Add a Smartposter icon as icon_data bytes for the image or video mime-type
string supplied with icon_type.

	
resource_size

	Get or set the int [https://docs.python.org/3.5/library/functions.html#int] size hint for the Smartposter resource. None [https://docs.python.org/3.5/library/constants.html#None] if a
size hint was not decoded or set.

	
resource_type

	Get or set the str [https://docs.python.org/3.5/library/stdtypes.html#str] type hint for the Smartposter resource. None [https://docs.python.org/3.5/library/constants.html#None] if a
type hint was not decoded or set.

>>> import ndef
>>> record = ndef.SmartposterRecord('https://github.com/nfcpy/ndeflib')
>>> record.set_title('Python package for parsing and generating NDEF', 'en')
>>> record.resource_type = 'text/html'
>>> record.resource_size = 1193970
>>> record.action = 'exec'
>>> len(b''.join(ndef.message_encoder([record])))
115

 Copyright 2016-2017, Stephen Tiedemann.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	ndeflib 0.1.1 documentation

 	Known Record Types

Device Information Record

The NDEF Device Information Record is a well-known record type defined by the
NFC Forum [http://nfc-forum.org/]. It carries a number of Type-Length-Value data elements that
provide information about the device, such as the manufacturer and device model
name.

	
class ndef.DeviceInformationRecord(vendor_name, model_name, unique_name=None, uuid_string=None, version_string=None)

	Initialize the record with required and optional device information. The
vendor_name and model_name arguments are required, all other arguments are
optional information.

	Parameters:	
	vendor_name (str [https://docs.python.org/3.5/library/stdtypes.html#str]) – sets the vendor_name attribute

	model_name (str [https://docs.python.org/3.5/library/stdtypes.html#str]) – sets the model_name attribute

	unique_name (str [https://docs.python.org/3.5/library/stdtypes.html#str]) – sets the unique_name attribute

	uuid_string (str [https://docs.python.org/3.5/library/stdtypes.html#str]) – sets the uuid_string attribute

	version_string (str [https://docs.python.org/3.5/library/stdtypes.html#str]) – sets the version_string attribute

	
type

	The Device Information Record type is urn:nfc:wkt:Di.

	
name

	Value of the NDEF Record ID field, an empty str [https://docs.python.org/3.5/library/stdtypes.html#str] if not set.

	
data

	A bytes [https://docs.python.org/3.5/library/functions.html#bytes] object containing the NDEF Record PAYLOAD encoded from the
current attributes.

	
vendor_name

	Get or set the device vendor name str [https://docs.python.org/3.5/library/stdtypes.html#str].

	
model_name

	Get or set the device model name str [https://docs.python.org/3.5/library/stdtypes.html#str].

	
unique_name

	Get or set the device unique name str [https://docs.python.org/3.5/library/stdtypes.html#str].

	
uuid_string

	Get or set the universially unique identifier str [https://docs.python.org/3.5/library/stdtypes.html#str].

	
version_string

	Get or set the device firmware version str [https://docs.python.org/3.5/library/stdtypes.html#str].

	
undefined_data_elements

	A list of undefined data elements as named tuples with data_type and
data_bytes attributes. This is a reference to the internal list and may
thus be updated in-place but it is strongly recommended to use the
add_undefined_data_element method with data_type and data_bytes
validation. It would also not be safe to rely on such implementation
detail.

	
add_undefined_data_element(data_type, data_bytes)

	Add an undefined (reserved future use) device information data
element. The data_type must be an an integer in range(5, 256). The
data_bytes argument provides the up to 255 octets to transmit.

Undefined data elements should not normally be added. This method is
primarily here to allow data elements defined by future revisions of the
specification before this implementation is updated.

>>> import ndef
>>> record = ndef.DeviceInformationRecord('Sony', 'RC-S380')
>>> record.unique_name = 'Black NFC Reader connected to PC'
>>> record.uuid_string = '123e4567-e89b-12d3-a456-426655440000'
>>> record.version_string = 'NFC Port-100 v1.02'
>>> len(b''.join(ndef.message_encoder([record])))
92

 Copyright 2016-2017, Stephen Tiedemann.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	ndeflib 0.1.1 documentation

 	Known Record Types

Connection Handover

The NFC Forum [http://nfc-forum.org/] Connection Handover specification defines a number of Record
structures that are used to exchange messages between Handover Requester,
Selector and Mediator devices to eventually establish alternative carrier
connections for additional data exchange. Generally, a requester device sends a
Handover Request Message to announce supported alternative carriers and expects
the selector device to return a Handover Select Message with a selection of
alternative carriers supported by both devices. If the two devices are not close
enough for NFC communication, a third device may use the Handover Mediation and
Handover Initiate Messages to relay information between the two.

Any of above mentioned Handover Messages is constructed as an NDEF Message where
the first record associates the processing context. The Handover Request,
Select, Mediation, and Initiate Record classes implement the appropriate
context, i.e. record types known by context are decoded by associated record
type classes while others are decoded as generic NDEF Records.

Handover Request Record

The Handover Request Record is the first record of a connection handover request
message. Information enclosed within the payload of a handover request record
includes the handover version number, a random number for resolving a handover
request collision (when both peer devices simultaenously send a handover request
message) and a number of references to alternative carrier information records
subsequently encoded in the same message.

>>> import ndef
>>> from os import urandom
>>> wsc = 'application/vnd.wfa.wsc'
>>> message = [ndef.HandoverRequestRecord('1.3', urandom(2))]
>>> message.append(ndef.HandoverCarrierRecord(wsc, None, 'wifi'))
>>> message[0].add_alternative_carrier('active', message[1].name)

	
class ndef.HandoverRequestRecord(version='1.3', crn=None, *alternative_carrier)

	Initialize the record with a version number, a collision resolution random
number crn and zero or more alternative_carrier. The version number can
be set as an 8-bit integer (with 4-bit major and minor part), or as a
'{major}.{minor}' version string. An alternative carrier is given by a
tuple with carrier power state, carrier data reference and zero or more
auxiliary data references. The collision resolution number (crn) argument
is the unsigned 16-bit random integer for connection handover version ‘1.2’
or later, for any prior version number it must be None.

	Parameters:	
	version (int or str) – handover version number

	crn (int [https://docs.python.org/3.5/library/functions.html#int]) – collision resolution random number

	alternative_carrier (tuple [https://docs.python.org/3.5/library/stdtypes.html#tuple]) – alternative carrier entry

	
type

	The Handover Request Record type is urn:nfc:wkt:Hr.

	
name

	Value of the NDEF Record ID field, an empty str [https://docs.python.org/3.5/library/stdtypes.html#str] if not set.

	
data

	A bytes [https://docs.python.org/3.5/library/functions.html#bytes] object containing the NDEF Record PAYLOAD encoded from the
current attributes.

	
hexversion

	The version as an 8-bit integer with 4-bit major and minor part. This is a
read-only attribute.

	
version_info

	The version as a named tuple with major and minor version number
attributes. This is a read-only attribute.

	
version_string

	The version as the ‘{major}.{minor}’ formatted string. This is a read-only
attribute.

	
collision_resolution_number

	Get or set the random number for handover request message collision
resolution. May be None if the random number was neither decoded or set.

	
alternative_carriers

	A list [https://docs.python.org/3.5/library/stdtypes.html#list] of alternative carriers with attributes carrier_power_state,
carrier_data_reference, and auxiliary_data_reference list.

	
add_alternative_carrier(cps, cdr, *adr):

	Add a reference to a carrier data record within the handover request
message. The carrier data reference cdr is the name (NDEF Record ID) of
the carrier data record. The carrier power state cps is either
‘inactive’, ‘active’, ‘activating’, or ‘unknown’. Any number of auxiliary
data references adr may be added to link with other records in the
message that carry information related to the carrier.

Handover Select Record

The Handover Select Record is the first record of a connection handover select
message. Information enclosed within the payload of a handover select record
includes the handover version number, error reason and associated error data
when processing of the previously received handover request message failed, and
a number of references to alternative carrier information records subsequently
encoded in the same message.

>>> import ndef
>>> carrier = ndef.Record('mimetype/subtype', 'ref', b'1234')
>>> message = [ndef.HandoverSelectRecord('1.3'), carrier]
>>> message[0].add_alternative_carrier('active', carrier.name)

	
class ndef.HandoverSelectRecord(version='1.3', error=None, *alternative_carrier)

	Initialize the record with a version number, an error information tuple,
and zero or more alternative_carrier. The version number can be either an
8-bit integer (4-bit major, 4-bit minor), or a '{major}.{minor}' version
string. An alternative carrier is given by a tuple with carrier power
state, carrier data reference and zero or more auxiliary data
references. The error argument is a tuple with error reason and error
data. Error information, if not None, is encoded as the local Error Record
after all given alternative carriers.

	Parameters:	
	version (int or str) – handover version number

	error (tuple [https://docs.python.org/3.5/library/stdtypes.html#tuple]) – error reason and data

	alternative_carrier (tuple [https://docs.python.org/3.5/library/stdtypes.html#tuple]) – alternative carrier entry

	
type

	The Handover Select Record type is urn:nfc:wkt:Hs.

	
name

	Value of the NDEF Record ID field, an empty str [https://docs.python.org/3.5/library/stdtypes.html#str] if not set.

	
data

	A bytes [https://docs.python.org/3.5/library/functions.html#bytes] object containing the NDEF Record PAYLOAD encoded from the
current attributes.

	
hexversion

	The version as an 8-bit integer with 4-bit major and minor part. This is a
read-only attribute.

	
version_info

	The version as a named tuple with major and minor version number
attributes. This is a read-only attribute.

	
version_string

	The version as the ‘{major}.{minor}’ formatted string. This is a read-only
attribute.

	
error

	Either error information or None. Error details can be accessed with
error.error_reason and error.error_data. Formatted error
information is provided with error.error_reason_string.

	
set_error(error_reason, error_data):

	Set error information. The error_reason argument is an 8-bit integer
value but only values 1, 2 and 3 are defined in the specification. For
defined error reasons the error_data argument is the associated value
(which is a number in all cases). For undefined error reason values the
error_data argument is bytes [https://docs.python.org/3.5/library/functions.html#bytes]. Error reason value 0 is strictly
reserved and never encoded or decoded.

	
alternative_carriers

	A list [https://docs.python.org/3.5/library/stdtypes.html#list] of alternative carriers with attributes carrier_power_state,
carrier_data_reference, and auxiliary_data_reference list.

	
add_alternative_carrier(cps, cdr, *adr):

	Add a reference to a carrier data record within the handover select
message. The carrier data reference cdr is the name (NDEF Record ID) of
the carrier data record. The carrier power state cps is either
‘inactive’, ‘active’, ‘activating’, or ‘unknown’. Any number of auxiliary
data references adr may be added to link with other records in the
message that carry information related to the carrier.

Handover Mediation Record

The Handover Mediation Record is the first record of a connection handover
mediation message. Information enclosed within the payload of a handover
mediation record includes the version number and zero or more references to
alternative carrier information records subsequently encoded in the same
message.

>>> import ndef
>>> carrier = ndef.Record('mimetype/subtype', 'ref', b'1234')
>>> message = [ndef.HandoverMediationRecord('1.3'), carrier]
>>> message[0].add_alternative_carrier('active', carrier.name)

	
class ndef.HandoverMediationRecord(version='1.3', *alternative_carrier)

	Initialize the record with version number and zero or more
alternative_carrier. The version number can be either an 8-bit integer
(4-bit major, 4-bit minor), or a '{major}.{minor}' version string. An
alternative carrier is given by a tuple with carrier power state, carrier
data reference and zero or more auxiliary data references.

	Parameters:	
	version (int or str) – handover version number

	alternative_carrier (tuple [https://docs.python.org/3.5/library/stdtypes.html#tuple]) – alternative carrier entry

	
type

	The Handover Select Record type is urn:nfc:wkt:Hm.

	
name

	Value of the NDEF Record ID field, an empty str [https://docs.python.org/3.5/library/stdtypes.html#str] if not set.

	
data

	A bytes [https://docs.python.org/3.5/library/functions.html#bytes] object containing the NDEF Record PAYLOAD encoded from the
current attributes.

	
hexversion

	The version as an 8-bit integer with 4-bit major and minor part. This is a
read-only attribute.

	
version_info

	The version as a named tuple with major and minor version number
attributes. This is a read-only attribute.

	
version_string

	The version as the ‘{major}.{minor}’ formatted string. This is a read-only
attribute.

	
alternative_carriers

	A list [https://docs.python.org/3.5/library/stdtypes.html#list] of alternative carriers with attributes carrier_power_state,
carrier_data_reference, and auxiliary_data_reference list.

	
add_alternative_carrier(cps, cdr, *adr):

	Add a reference to a carrier data record within the handover mediation
message. The carrier data reference cdr is the name (NDEF Record ID) of
the carrier data record. The carrier power state cps is either
‘inactive’, ‘active’, ‘activating’, or ‘unknown’. Any number of auxiliary
data references adr may be added to link with other records in the
message that carry information related to the carrier.

Handover Initiate Record

The Handover Initiate Record is the first record of a connection handover initiate
message. Information enclosed within the payload of a handover initiate record
includes the version number and zero or more references to alternative carrier
information records subsequently encoded in the same message.

>>> import ndef
>>> carrier = ndef.Record('mimetype/subtype', 'ref', b'1234')
>>> message = [ndef.HandoverInitiateRecord('1.3'), carrier]
>>> message[0].add_alternative_carrier('active', carrier.name)

	
class ndef.HandoverInitiateRecord(version='1.3', *alternative_carrier)

	Initialize the record with version number and zero or more
alternative_carrier. The version number can be either an 8-bit integer
(4-bit major, 4-bit minor), or a '{major}.{minor}' version string. An
alternative carrier is given by a tuple with carrier power state, carrier
data reference and zero or more auxiliary data references.

	Parameters:	
	version (int or str) – handover version number

	alternative_carrier (tuple [https://docs.python.org/3.5/library/stdtypes.html#tuple]) – alternative carrier entry

	
type

	The Handover Select Record type is urn:nfc:wkt:Hi.

	
name

	Value of the NDEF Record ID field, an empty str [https://docs.python.org/3.5/library/stdtypes.html#str] if not set.

	
data

	A bytes [https://docs.python.org/3.5/library/functions.html#bytes] object containing the NDEF Record PAYLOAD encoded from the
current attributes.

	
hexversion

	The version as an 8-bit integer with 4-bit major and minor part. This is a
read-only attribute.

	
version_info

	The version as a named tuple with major and minor version number
attributes. This is a read-only attribute.

	
version_string

	The version as the ‘{major}.{minor}’ formatted string. This is a read-only
attribute.

	
alternative_carriers

	A list [https://docs.python.org/3.5/library/stdtypes.html#list] of alternative carriers with attributes carrier_power_state,
carrier_data_reference, and auxiliary_data_reference list.

	
add_alternative_carrier(cps, cdr, *adr):

	Add a reference to a carrier data record within the handover initiate
message. The carrier data reference cdr is the name (NDEF Record ID) of
the carrier data record. The carrier power state cps is either
‘inactive’, ‘active’, ‘activating’, or ‘unknown’. Any number of auxiliary
data references adr may be added to link with other records in the
message that carry information related to the carrier.

Handover Carrier Record

The Handover Carrier Record allows a unique identification of an alternative
carrier technology in a handover request message when no carrier configuration
data is to be provided. If the handover selector device has the same carrier
technology available, it would respond with a carrier configuration record with
payload type equal to the carrier type (that is, the triples (TNF, TYPE_LENGTH,
TYPE) and (CTF, CARRIER_TYPE_LENGTH, CARRIER_TYPE) match exactly).

>>> import ndef
>>> record = ndef.HandoverCarrierRecord('application/vnd.wfa.wsc')
>>> record.name = 'wlan'
>>> print(record)
NDEF Handover Carrier Record ID 'wlan' CARRIER 'application/vnd.wfa.wsc' DATA 0 byte

	
class ndef.HandoverCarrierRecord(carrier_type, carrier_data=None, reference=None)

	Initialize the HandoverCarrierRecord with carrier_type, carrier_data, and
a reference that sets the Record.name attribute. The carrier type has the
same format as a record type name, i.e. the combination of NDEF Record TNF
and TYPE that is used by the Record.type attribute. The carrier_data
argument must be a valid bytearray [https://docs.python.org/3.5/library/functions.html#bytearray] initializer, or None.

	Parameters:	
	carrier_type (str [https://docs.python.org/3.5/library/stdtypes.html#str]) – initial value of the carrier_type attribute

	carrier_data (sequence) – initial value of the carrier_data attribute

	reference (str [https://docs.python.org/3.5/library/stdtypes.html#str]) – initial value of the the name attribute

	
type

	The Handover Select Record type is urn:nfc:wkt:Hc.

	
name

	Value of the NDEF Record ID field, an empty str [https://docs.python.org/3.5/library/stdtypes.html#str] if not set. The
reference init argument can also be used to set this value.

	
data

	A bytes [https://docs.python.org/3.5/library/functions.html#bytes] object containing the NDEF Record PAYLOAD encoded from the
current attributes.

	
carrier_type

	Get or set the carrier type as a Record.type formatted representation of
the Handover Carrier Record CTF and CARRIER_TYPE fields.

	
carrier_data

	Contents of the Handover Carrier Record CARRIER_DATA field as a
bytearray [https://docs.python.org/3.5/library/functions.html#bytearray]. The attribute itself is read-only but the content may be
modified or expanded.

 Copyright 2016-2017, Stephen Tiedemann.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	ndeflib 0.1.1 documentation

Adding Private Records

Private (or experimental) NDEF Record decoding and encoding can be easily made
recognized by the message_decoder() and message_encoder(). It just
requires a record class that inherits from ndef.record.GlobalRecord and
provides the desired record type value as well as the payload decode and encode
methods. The following sections document the decode/encode interface by way of
example, with increasing complexity.

Record with no Payload

This is the most simple yet fully functional record class. It inherits from the
abstract class ndef.record.GlobalRecord (which is actually just an abstract
version of Record to make sure the dervied class implements the payload
decode and encode methods. The record type string is set via the _type class
attribute. The _encode_payload method must return the bytes [https://docs.python.org/3.5/library/functions.html#bytes] for the NDEF
Record PAYLOAD field, usually encoded from other record attributes but here it’s
just empty. The _decode_payload classmethod receives the NDEF Record PAYLOAD
field the bytes [https://docs.python.org/3.5/library/functions.html#bytes] type octets and returns a record object populated with the
decoded PAYLOAD data, again nothing for the record with no payload. The
_decode_min_payload_length and _decode_max_payload_length class
attributes (put at the end of the class definition only to align with the
explanation) inform the record decoder about the minmum required and maximum
acceptable PAYLOAD size, thus the octets argument will never have less or more
data. If a class does not set those values, the default min value is 0 and the
default max value is Record.MAX_PAYLOAD_SIZE.

import ndef

class ExampleRecordWithNoPayload(ndef.record.GlobalRecord):
 """An NDEF Record with no payload."""

 _type = 'urn:nfc:ext:nfcpy.org:x-empty'

 def _encode_payload(self):
 # This record does not have any payload to encode.
 return b''

 @classmethod
 def _decode_payload(cls, octets, errors):
 # This record does not have any payload to decode.
 return cls()

 _decode_min_payload_length = 0
 _decode_max_payload_length = 0

ndef.Record.register_type(ExampleRecordWithNoPayload)

record = ExampleRecordWithNoPayload()
octets = b''.join(ndef.message_encoder([record]))
print("encoded: {}".format(octets))

message = list(ndef.message_decoder(octets))
print("decoded: {}".format(message[0]))

encoded: b'\xd4\x11\x00nfcpy.org:x-empty'
decoded: NDEF Example Record With No Payload ID '' PAYLOAD 0 byte

Example Temperature Record

This record carries an unsigned 32-bit integer timestamp that is the seconds
since 1.1.1970 (and will overflow on February 7, 2106 !) and a signed 16-bit
integer with a temperature. The payload is thus a fixed structure with exactly 6
octets for which the inherited _decode_struct and _encode_struct methods
are perfectly suited. They are quite the same as using struct.unpack_from [https://docs.python.org/3.5/library/struct.html#struct.unpack_from] and
struct.pack [https://docs.python.org/3.5/library/struct.html#struct.pack] but return a single value directly and not as a (value,) tuple.

This example also shows how the __format__ method is used to provide an
arguments and a data view for the str() [https://docs.python.org/3.5/library/stdtypes.html#str] and repr() [https://docs.python.org/3.5/library/functions.html#repr] functions.

import ndef
import time

class ExampleTemperatureRecord(ndef.record.GlobalRecord):
 """An NDEF Record that carries a temperature and a timestamp."""

 _type = 'urn:nfc:ext:nfcpy.org:x-temp'

 def __init__(self, timestamp, temperature):
 self._time = timestamp
 self._temp = temperature

 def __format__(self, format_spec):
 if format_spec == 'args':
 # Return the init args for repr() but w/o class name and brackets
 return "{r._time}, {r._temp}".format(r=self)
 if format_spec == 'data':
 # Return a nicely formatted content string for str()
 data_str = time.strftime('%d.%m.%Y', time.gmtime(self._time))
 time_str = time.strftime('%H:%M:%S', time.gmtime(self._time))
 return "{}°C on {} at {}".format(self._temp, data_str, time_str)
 return super(ExampleTemperatureRecord, self).__format__(format_spec)

 def _encode_payload(self):
 return self._encode_struct('>Lh', self._time, self._temp)

 @classmethod
 def _decode_payload(cls, octets, errors):
 timestamp, temperature = cls._decode_struct('>Lh', octets)
 return cls(timestamp, temperature)

 # Make sure that _decode_payload gets only called with 6 octets
 _decode_min_payload_length = 6
 _decode_max_payload_length = 6

ndef.Record.register_type(ExampleTemperatureRecord)

record = ExampleTemperatureRecord(1468410873, 25)
octets = b''.join(ndef.message_encoder([record]))
print("encoded: {}".format(octets))

message = list(ndef.message_decoder(octets))
print("decoded: {}".format(message[0]))

encoded: b'\xd4\x10\x06nfcpy.org:x-tempW\x86+\xf9\x00\x19'
decoded: NDEF Example Temperature Record ID '' 25°C on 13.07.2016 at 11:54:33

Type Length Value Record

This record class demonstrates how _decode_struct and _encode_struct can
be used for typical Type-Length-Value constructs. The notion ‘BB+’ is a slight
extension of the struct [https://docs.python.org/3.5/library/struct.html#module-struct] module’s format string syntax and means to decode or
encode a 1 byte Type field, a 1 byte Length field and Length number of octets as
Value. The _decode_struct method then returns just the Type and Value. The
_encode_struct needs only the Type and Value arguments and takes the Length
from Value. Another format string syntax extension, but not not used in the
example, is a trailing ‘*’ character. That just means that all remaining octets
are returned as bytes [https://docs.python.org/3.5/library/functions.html#bytes].

This example also demonstrates how decode and encode error exceptions are
generated with the _decode_error and _encode_error methods. These
methods return an instance of ndef.DecodeError and ndef.EncodeError with
the fully qualified class name followed by the expanded format string. Two
similar methods, _type_error and _value_error may be used whenever a
TypeError [https://docs.python.org/3.5/library/exceptions.html#TypeError] or ValueError [https://docs.python.org/3.5/library/exceptions.html#ValueError] shall be reported with the full classname in its
error string. They do also check if the first word in the format string matches
a data attribute name, and if, the string is joined with a ‘.’ to the classname.

The _decode_payload method also shows the use of the errors argument. With
‘strict’ interpretation of errors the payload is expected to have the Type 1 TLV
encoded in first place (although not a recommended design for TLV loops). The
errors argument may also say ‘relax’ and then the order won’t matter.

import ndef

class ExampleTypeLengthValueRecord(ndef.record.GlobalRecord):
 """An NDEF Record with carries a temperature and a timestamp."""

 _type = 'urn:nfc:ext:nfcpy.org:x-tlvs'

 def __init__(self, *args):
 # We expect each argument to be a tuple of (Type, Value) where Type
 # is int and Value is bytes. So *args* will be a tuple of tuples.
 self._tlvs = args

 def _encode_payload(self):
 if sum([t for t, v in self._tlvs if t == 1]) != 1:
 raise self._encode_error("exactly one Type 1 TLV is required")
 tlv_octets = []
 for t, v in self._tlvs:
 tlv_octets.append(self._encode_struct('>BB+', t, v))
 return b''.join(tlv_octets)

 @classmethod
 def _decode_payload(cls, octets, errors):
 tlvs = []
 offset = 0
 while offset < len(octets):
 t, v = cls._decode_struct('>BB+', octets, offset)
 offset = offset + 2 + len(v)
 tlvs.append((t, v))
 if sum([t for t, v in tlvs if t == 1]) != 1:
 raise cls._encode_error("missing the mandatory Type 1 TLV")
 if errors == 'strict' and len(tlvs) > 0 and tlvs[0][0] != 1:
 errstr = 'first TLV must be Type 1, not Type {}'
 raise cls._encode_error(errstr, tlvs[0][0])
 return cls(*tlvs)

 # We need at least the 2 octets Type, Length for the first TLV.
 _decode_min_payload_length = 2

ndef.Record.register_type(ExampleTypeLengthValueRecord)

record = ExampleTypeLengthValueRecord((1, b'abc'), (5, b'xyz'))
octets = b''.join(ndef.message_encoder([record]))
print("encoded: {}".format(octets))

message = list(ndef.message_decoder(octets))
print("decoded: {}".format(message[0]))

encoded: b'\xd4\x10\nnfcpy.org:x-tlvs\x01\x03abc\x05\x03xyz'
decoded: NDEF Example Type Length Value Record ID '' PAYLOAD 10 byte '0103616263050378797a'

 Copyright 2016-2017, Stephen Tiedemann.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	ndeflib 0.1.1 documentation

 Python Module Index

 n

 			

 		
 n	

 	
 	
 ndef	

 Copyright 2016-2017, Stephen Tiedemann.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	ndeflib 0.1.1 documentation

Index

 A
 | C
 | D
 | E
 | H
 | I
 | L
 | M
 | N
 | R
 | S
 | T
 | U
 | V

A

 	

 	action (ndef.SmartposterRecord attribute)

 	add_icon() (ndef.SmartposterRecord method)

 	

 	add_undefined_data_element() (ndef.DeviceInformationRecord method)

 	alternative_carriers (ndef.HandoverInitiateRecord attribute)

 	

 	(ndef.HandoverMediationRecord attribute)

 	(ndef.HandoverRequestRecord attribute)

 	(ndef.HandoverSelectRecord attribute)

C

 	

 	carrier_data (ndef.HandoverCarrierRecord attribute)

 	carrier_type (ndef.HandoverCarrierRecord attribute)

 	

 	collision_resolution_number (ndef.HandoverRequestRecord attribute)

D

 	

 	data (ndef.DeviceInformationRecord attribute)

 	

 	(ndef.HandoverCarrierRecord attribute)

 	(ndef.HandoverInitiateRecord attribute)

 	(ndef.HandoverMediationRecord attribute)

 	(ndef.HandoverRequestRecord attribute)

 	(ndef.HandoverSelectRecord attribute)

 	(ndef.Record attribute)

 	(ndef.SmartposterRecord attribute)

 	(ndef.TextRecord attribute)

 	(ndef.UriRecord attribute)

 	

 	DeviceInformationRecord (class in ndef)

E

 	

 	encoding (ndef.TextRecord attribute)

 	

 	error (ndef.HandoverSelectRecord attribute)

H

 	

 	HandoverCarrierRecord (class in ndef)

 	HandoverInitiateRecord (class in ndef)

 	HandoverMediationRecord (class in ndef)

 	

 	HandoverRequestRecord (class in ndef)

 	HandoverSelectRecord (class in ndef)

 	hexversion (ndef.HandoverInitiateRecord attribute)

 	

 	(ndef.HandoverMediationRecord attribute)

 	(ndef.HandoverRequestRecord attribute)

 	(ndef.HandoverSelectRecord attribute)

I

 	

 	icon (ndef.SmartposterRecord attribute)

 	icons (ndef.SmartposterRecord attribute)

 	

 	iri (ndef.UriRecord attribute)

L

 	

 	language (ndef.TextRecord attribute)

M

 	

 	MAX_PAYLOAD_SIZE (ndef.Record attribute)

 	message_decoder() (in module ndef)

 	

 	message_encoder() (in module ndef)

 	model_name (ndef.DeviceInformationRecord attribute)

N

 	

 	name (ndef.DeviceInformationRecord attribute)

 	

 	(ndef.HandoverCarrierRecord attribute)

 	(ndef.HandoverInitiateRecord attribute)

 	(ndef.HandoverMediationRecord attribute)

 	(ndef.HandoverRequestRecord attribute)

 	(ndef.HandoverSelectRecord attribute)

 	(ndef.Record attribute)

 	(ndef.SmartposterRecord attribute)

 	(ndef.TextRecord attribute)

 	(ndef.UriRecord attribute)

 	

 	ndef (module), [1], [2], [3], [4], [5], [6], [7], [8]

R

 	

 	Record (class in ndef)

 	register_type() (ndef.Record class method)

 	resource (ndef.SmartposterRecord attribute)

 	

 	resource_size (ndef.SmartposterRecord attribute)

 	resource_type (ndef.SmartposterRecord attribute)

 	
 RFC

 	

 	RFC 2046, [1]

 	RFC 2141, [1]

 	RFC 3986, [1], [2]

 	RFC 3987

S

 	

 	set_title() (ndef.SmartposterRecord method)

 	

 	SmartposterRecord (class in ndef)

T

 	

 	text (ndef.TextRecord attribute)

 	TextRecord (class in ndef)

 	title (ndef.SmartposterRecord attribute)

 	

 	titles (ndef.SmartposterRecord attribute)

 	type (ndef.DeviceInformationRecord attribute)

 	

 	(ndef.HandoverCarrierRecord attribute)

 	(ndef.HandoverInitiateRecord attribute)

 	(ndef.HandoverMediationRecord attribute)

 	(ndef.HandoverRequestRecord attribute)

 	(ndef.HandoverSelectRecord attribute)

 	(ndef.Record attribute)

 	(ndef.SmartposterRecord attribute)

 	(ndef.TextRecord attribute)

 	(ndef.UriRecord attribute)

U

 	

 	undefined_data_elements (ndef.DeviceInformationRecord attribute)

 	unique_name (ndef.DeviceInformationRecord attribute)

 	uri (ndef.UriRecord attribute)

 	

 	UriRecord (class in ndef)

 	uuid_string (ndef.DeviceInformationRecord attribute)

V

 	

 	vendor_name (ndef.DeviceInformationRecord attribute)

 	version_info (ndef.HandoverInitiateRecord attribute)

 	

 	(ndef.HandoverMediationRecord attribute)

 	(ndef.HandoverRequestRecord attribute)

 	(ndef.HandoverSelectRecord attribute)

 	

 	version_string (ndef.DeviceInformationRecord attribute)

 	

 	(ndef.HandoverInitiateRecord attribute)

 	(ndef.HandoverMediationRecord attribute)

 	(ndef.HandoverRequestRecord attribute)

 	(ndef.HandoverSelectRecord attribute)

 Copyright 2016-2017, Stephen Tiedemann.
 Created using Sphinx 1.3.5.

 _static/comment-close.png

_static/comment.png

_static/down.png

_static/ndeflib.png

_static/file.png

_static/plus.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/down-pressed.png

_static/ajax-loader.gif

search.html

 Navigation

 		
 index

 		
 modules |

 		ndeflib 0.1.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016-2017, Stephen Tiedemann.
 Created using Sphinx 1.3.5.

_static/comment-bright.png

