ndeflib documentation
Release 0.3.3

Stephen Tiedemann

May 28, 2019

Documentation

1 NDEF Decoding and Encoding

1.1
1.2
1.3

Message Decoder. e e e e e e e e e
Message Encoder L e
Record Class i e e e

2 Known Record Types

2.1
22
23
24
2.5
2.6
2.7
2.8

TextRecord. e
URIRecord e e e
Smartposter Record
Device Information Record L
Connection Handover L e
Bluetooth Secure Simple Pairing oL
Wi-Fi Simple Configuration e e e
Signature Record L

3 Adding Private Records

3.1 RecordwithnoPayload e

3.2 Example Temperature Record e

3.3 TypeLength Value Record e e
4 Contributing

4.1 Reporting issUeS v v vt e e e e e e e e e e e

4.2 Submitting patches L. e e e e e e e e e

43 Development tips v v i e
5 License

S0 LICENSEEXE . o v v v v v v e e e e e e e e e e e e e e e e e e e
Python Module Index

A~ bW W

57
57
58
59

61
61
61
61

63
63

65

ndeflib documentation, Release 0.3.3

The ndeflib is a Python package for parsing and generating NFC Data Exchange Format (NDEF) messages. It is
licensed under the ISCL, hosted on GitHub and can be installed from PyPI.

>>> import ndef

>>> hexstr = '9101085402656e48656c6c6£5101085402656e576f£726c64"
>>> octets = bytearray.fromhex (hexstr)

>>> for record in ndef.message_decoder (octets): print (record)

NDEF Text Record ID '' Text 'Hello' Language 'en' Encoding 'UTF-8'
NDEF Text Record ID '' Text 'World' Language 'en' Encoding 'UTF-8'
>>> message = [ndef.TextRecord("Hello"), ndef.TextRecord("World")]
>>> pb''.join(ndef.message_encoder (message)) == octets

True

Documentation 1

http://choosealicense.com/licenses/isc/
https://github.com/nfcpy/ndeflib
https://pypi.python.org/pypi/ndeflib

ndeflib documentation, Release 0.3.3

2 Documentation

CHAPTER 1

NDEF Decoding and Encoding

NDEF (NFC Data Exchange Format), specified by the NFC Forum, is a binary message format used to encapsulate
application-defined payloads exchanged between NFC Devices and Tags. Each payload is encoded as an NDEF
Record with fields that specify the payload size, payload type, an optional payload identifier, and flags for indicating
the first and last record of an NDEF Message or tagging record chunks. An NDEF Message is simply a sequence of
one or more NDEF Records where the first and last record are marked by the Message Begin and End flags.

The nde £ package interface for decoding and encoding of NDEF Messages consists of the message_decoder ()
and message_encoder () functions that both return generators for decoding octets into nde . Record instances
or encoding ndef . Record instances into octets. Known record types are decoded into instances of their implemen-
tation class and can be directly encoded as part of a message.

1.1 Message Decoder

ndef .message_decoder (stream_or_bytes, errors=’strict’, known_types=Record._known_types)

Returns a generator function that decodes NDEF Records from a file-like, byte-oriented stream or a bytes object
given by the stream_or_bytes argument. When the errors argument is set to ‘strict’ (the default), the decoder
expects a valid NDEF Message with Message Begin and End flags set for the first and last record and decoding
of known record types will fail for any format errors. Minor format errors are accepted when errors is set
to ‘relax’. With errors set to ‘ignore’ the decoder silently stops when a non-correctable error is encountered.
The known_types argument provides the mapping of record type strings to class implementations. It defaults
to all global records implemented by ndef1ib or additionally registered from user code. It’s main use would
probably be to force decoding into only generic records with known_types={}.

Parameters
* stream or_bytes (byte stream or bytes object)— message data octets
* errors (str) - error handling strategy, may be ‘strict’, ‘relax’ or ‘ignore’
* known_types (dict)— mapping of known record types to implementation classes

Raises ndef .DecodeError — for data format errors (unless errors is set to ‘ignore’)

http://nfc-forum.org/
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

ndeflib documentation, Release 0.3.3

>>> import ndef
>>> octets = bytearray.fromhex ('910303414243616263 5903030144454630646566")
>>> decoder = ndef.message_decoder (octets)
>>> next (decoder)
ndef.record.Record('urn:nfc:wkt:ABC', '', bytearray(b'abc'))
>>> next (decoder)
ndef.record.Record('urn:nfc:wkt:DEF', '0', bytearray(b'def'))
>>> next (decoder)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
StopIteration
>>> message = list (ndef.message_decoder (octets))
>>> len (message)
2

1.2 Message Encoder

ndef .message_encoder (message=None, stream=None)

Returns a generator function that encodes nde £ . Record objects into an NDEF Message octet sequence. The
message argument is either an iterable of records or None, if message is None the records must be sequentially
send to the encoder (as for any generator the first send value must be None, specific to the message encoder is
that octets are generated for the previous record and a final None value must be send for the last record octets).
The stream argument controls the output of the generator function. If stream is None, the generator yields a
bytes object for each encoded record. Otherwise, it must be a file-like, byte-oriented stream that receives the
encoded octets and the generator yields the number of octets written per record.

Parameters
* message (iterable or None)- sequence of records to encode
* stream (byte stream or None) - file-like output stream

Raises ndef.EncodeError — for invalid record parameter values or types

>>> import ndef

>>> recordl = ndef.Record('urn:nfc:wkt:ABC', '1', b'abc'")
>>> record2 = ndef.Record('urn:nfc:wkt:DEF', '2', b'def'")
>>> encoder = ndef.message_encoder ()

>>> encoder.send (None)

>>> encoder.send (recordl)

>>> encoder.send(record2)
b'\x99\x03\x03\x01ABClabc'

>>> encoder.send (None)

b'Y\x03\x03\x01DEF2def"

>>> message = [recordl, record2]

>>> pb''.join((ndef.message_encoder (message)))
b'"\x99\x03\x03\x01ABClabcY\x03\x03\x01DEF2def"
>>> list ((ndef.message_encoder (message, open('/dev/null', 'wb'))))
[11, 11]

1.3 Record Class

class ndef.Record (type=", name=", data=b")
This class implements generic decoding and encoding of an NDEF Record and is the base for all specialized

4 Chapter 1. NDEF Decoding and Encoding

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

ndeflib documentation, Release 0.3.3

record type classes. The NDEF Record Payload Type encoded by the TNF (Type Name Format) and TYPE field
is represented by a single fype string argument:

Empty (TNF 0)

An Empty record has no TYPE, ID, and PAYLOAD fields. This is set if the fype argument is absent,
None, or an empty string. Encoding ignores whatever is set as name and data, producing just the
short length record b ' \x10\x00\x00"'.

NFC Forum Well Known Type (TNF 1)

An NFC Forum Well Known Type is a URN (RFC 2141) with namespace identifier (NID) nfc
and the namespace specific string (NSS) prefixed with wkt :. When encoding, the type is writ-
ten as a relative-URI (cf. RFC 3986), omitting the NID and the prefix. For example, the type
urn:nfc:wkt :Tisencoded as TNF 1, TYPE T.

Media-type as defined in RFC 2046 (TNF 2)

A media-type follows the media-type grammar defined in RFC 2046. Records that carry a payload
with an existing, registered media type should use this record type. Note that the record type indicates
the type of the payload; it does not refer to a MIME message that contains an entity of the given type.
For example, the media type ‘image/jpeg’ indicates that the payload is an image in JPEG format
using JFIF encoding as defined by RFC 2046.

Absolute URI as defined in RFC 3986 (TNF 3)

An absolute-URI follows the absolute-URI BNF construct defined by RFC 3986. This type can be
used for payloads that are defined by URIs. For example, records that carry a payload with an XML-
based message type may use the XML namespace identifier of the root element as the record type,
like a SOAP/1.1 message may be http://schemas.xmlsoap.org/soap/envelope/.

NFC Forum External Type (TNF 4)

An NFC Forum External Type is a URN (RFC 2141) with namespace identifier (NID) nfc and
the namespace specific string (NSS) prefixed with ext:. When encoding, the type is written
as a relative-URI (cf. RFC 3986), omitting the NID and the prefix. For example, the type
urn:nfc:ext:nfcpy.org: T will be encoded as TNF 4, TYPE nfcpy.org:T.

Unknown (TNF 5)

The Unknown record type indicates that the type of the payload is unknown, similar to the
application/octet—-stream media type. It is set with the fype argument unknown and en-
coded with an empty TYPE field.

Unchanged (TNF 6)

The Unchanged record type is used for all except the first record in a chunked payload. It is set with
the type argument unchanged and encoded with an empty TYPE field.

The rype argument sets the final value of the ¢ ype attribute, which provides the value only for reading. The
name and data argument set the initial values of the name and dat a attributes. They can both be changed later.

Parameters
* type (str)—final value for the t ype attribute
* name (str) — initial value for the see name attribute

e data (bytes) — initial value for the data attribute

type
The record type is a read-only text string set either by decoding or through initialization.

1.3. Record Class 5

https://tools.ietf.org/html/rfc2141.html
https://tools.ietf.org/html/rfc3986.html
https://tools.ietf.org/html/rfc2046.html
https://tools.ietf.org/html/rfc2046.html
https://tools.ietf.org/html/rfc3986.html
https://tools.ietf.org/html/rfc2141.html
https://tools.ietf.org/html/rfc3986.html
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes

ndeflib documentation, Release 0.3.3

name
The record name is a text string that corresponds to the NDEF Record ID field. The maximum capacity is
255 8-bit characters, converted in and out as latin-1.

data
The record data is a bytearray with the sequence of octets that correspond to the NDEF Record PAYLOAD
field. The attribute itself is readonly but the bytearray content can be changed. Note that for derived record
classes this becomes a read-only bytes object with the content encoded from the record’s attributes.

MAX PAYLOAD SIZE
This is a class data attribute that restricts the decodable and encodable maximum NDEF Record PAYLOAD
size from the theoretical value of up to 4GB to IMB. If needed, a different value can be assigned to the
record class: ndef.Record.MAX _PAYLOAD SIZE = 100%x1024

classmethod register_type (record_class)
Register a derived record class as a known type for decoding. This creates an entry for the record_class
type string to be decoded as a record_class instance. Beyond internal use this is needed for adding private
records.

6 Chapter 1. NDEF Decoding and Encoding

CHAPTER 2

Known Record Types

The nde £ package implements special decoding and encoding for a number of known record types.

2.1 Text Record

The NDEF Text Record is a well-known record type defined by the NFC Forum. It carries a UTF-8 or UTF-16 encoded
text string with an associated IANA language code identifier.

class ndef.TextRecord (text=", language="en’, encoding="UTF-8’)
A TextRecord is initialized with the actual text content, an ISO/IANA language identifier, and the desired
transfer encoding UTF-8 or UTF-16. Default values are empty text, language code ‘en’, and ‘UTF-8’ encoding.

Parameters
* text (str)—initial value for the text attribute, default *’
* language (str) —initial value for the 1anguage attribute, default ‘en’

* encoding (st r) —initial value for the encoding attribute, default ‘UTF-8’

type
The Text Record type is urn:nfc:wkt : T.

name
Value of the NDEF Record ID field, an empty st r if not set.

data
A bytes object containing the NDEF Record PAYLOAD encoded from the current attributes.

text
The decoded or set text string value.

language
The decoded or set IANA language code identifier.

encoding
The transfer encoding of the text string. Either ‘UTF-8’ or ‘UTF-16’.

http://nfc-forum.org/
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes

ndeflib documentation, Release 0.3.3

>>> import ndef
>>> record = ndef.TextRecord("Hallo Welt", "de'")

>>> octets = b''.join(ndef.message_encoder ([record]))
>>> print (list (ndef.message_decoder (octets)) [0])
NDEF Text Record ID '' Text 'Hallo Welt' Language 'de' Encoding 'UTF-8'

2.2 URI Record

The NDEF URI Record is a well-known record type defined by the NFC Forum. It carries a, potentially abbreviated,
UTF-8 encoded Internationalized Resource Identifier (IRI) as defined by RFC 3987. Abbreviation covers certain prefix
patterns that are compactly encoded as a single octet and automatically expanded when decoding. The UriRecord
class provides both access attributes for decoded IRI as well as a converted URI (if a netloc part is present in the IRI).

class ndef.UriRecord (iri=")
The UriRecord class decodes or encodes an NDEF URI Record. The UriRecord. iri attribute holds
the expanded (if a valid abbreviation code was decoded) internationalized resource identifier (IRI). The
UriRecord.uri attribute is a converted version of the IRI. Conversion is applied only for IRI’s that split
with a netloc component. A converted URI contains only ASCII characters with an IDNA encoded netloc
component and percent-encoded path, query and fragment components.

Parameters iri (st r)—initial value for the i ri attribute, default *’

type
The URI Record type is urn:nfc:wkt : U.

name
Value of the NDEF Record ID field, an empty st r if not set.

data
A bytes object containing the NDEF Record PAYLOAD encoded from the current attributes.

iri
The decoded or set internationalized resource identifier, expanded if an abbreviation code was used in the
record payload.

uri
The uniform resource identifier translated from the UriRecord. iri attribute.

>>> import ndef

>>> record = ndef.UriRecord("http://www.hdayo.com/~user/")
>>> record.iri

'http://www.hddyo.com/~user/"

>>> record.uri

'http://www.xn-—-hy-viaa5g.com/~user/"

>>> record = ndef.UriRecord("http://www.example.com")

>>> b''.join(ndef.message_encoder ([record]))
b'\xd1\x01\x0cU\x0lexample.com'

2.3 Smartposter Record

The NFC Forum Smart Poster Record Type Definition defines a structure that associates an Internationalized Resource
Identifier (or Uniform Resource Identifier) with various types of metadata. For a user this is most noteably the ability
to attach descriptive text in different languages as well as image data for icon rendering. For a smartposter application

8 Chapter 2. Known Record Types

http://nfc-forum.org/
https://tools.ietf.org/html/rfc3987.html
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
http://nfc-forum.org/

ndeflib documentation, Release 0.3.3

this is a recommendation for processing as well as resource type and size hints to guide a strategy for retrieving the
resource.

class ndef.SmartposterRecord (resource, title=None, action=None, icon=None, re-

source_size=None, resource_type=None)
Initialize a SmartposterRecord instance. The only required argument is the Internationalized Resource

Identifier resource, all other arguments are optional metadata.
Parameters
* resource (st r)— Internationalized Resource Identifier
* title(str or dict)-Englishtitle str or dict with language keys and title values
* action (str or int) - assigns a value tothe act ion attribute
* icon(bytes or dict)-PNGdatabytes ordict with {icon-type: icon_data} items
* resource_size (int)— assigns a value to the resource_size attribute

* resource_type (str)—assigns a value to the resource_type attribute

type
The Smartposter Record type is urn:nfc:wkt : Sp.

name
Value of the NDEF Record ID field, an empty st r if not set.

data
A bytes object containing the NDEF Record PAYLOAD encoded from the current attributes.

resource
Get or set the Smartposter resource identifier. A set value is interpreted as an internationalized resource
identifier (so it can be unicode). When reading, the resource attribute returns a UriRecord which can be
used to set the UriRecord. iriand UriRecord. uri directly.

title
The title string for language code ‘en’ or the first title string that was decoded or set. If no title string is
available the value is None. The attribute can not be set, use set_title ().

titles
A dictionary of all decoded or set titles with language st r keys and title st r values. The attribute can
not be set, use set_title().

set_title (title, language="en’, encoding="UTF-8’)
Set the title string for a specific language which defaults to ‘en’. The transfer encoding may be set to either
‘UTF-8’ or ‘UTF-16’, the default is ‘UTF-8’.

action
Get or set the recommended action for handling the Smartposter resource. A set value may be ‘exec’,
‘save’, ‘edit’ or an index thereof. A read value is either one of above strings or None if no action value
was decoded or set.

icon
The image data bytes for an ‘image/png’ type smartposter icon or the first icon decoded or added. If no
icon is available the value is None. The attribute can not be set, use add_icon ().

icons
A dictionary of icon images with mime-type st r keys and icon-data bytes values. The attribute can not
be set, use add_icon ().

add_icon (icon_type, icon_data)
Add a Smartposter icon as icon_data bytes for the image or video mime-type string supplied with
icon_type.

2.3. Smartposter Record 9

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes

ndeflib documentation, Release 0.3.3

resource_size
Get or set the int size hint for the Smartposter resource. None if a size hint was not decoded or set.

resource_type
Get or set the st r type hint for the Smartposter resource. None if a type hint was not decoded or set.

>>>
>>>
>>>
>>>
>>>
>>>
>>>
115

import ndef

record = ndef.SmartposterRecord('https://github.com/nfcpy/ndeflib")
record.set_title('Python package for parsing and generating NDEF', 'en')
record.resource_type = 'text/html'

record.resource_size = 1193970

record.action = 'exec'

len(b''.join (ndef.message_encoder ([record])))

2.4 Device Information Record

The NDEF Device Information Record is a well-known record type defined by the NFC Forum. It carries a number
of Type-Length-Value data elements that provide information about the device, such as the manufacturer and device
model name.

class ndef.DeviceInformationRecord (vendor_name, model_name, unique_name=None,

uuid_string=None, version_string=None)

Initialize the record with required and optional device information. The vendor_name and model_name argu-
ments are required, all other arguments are optional information.

Parameters

type

name

data

vendor_ name (str) - sets the vendor_name attribute
model_name (str) - sets the model_name attribute

unique_name (str) — sets the unique_name attribute
uuid_string (str)—setsthe uuid string attribute

version_string (str)—setsthe version_ string attribute

The Device Information Record type is urn:nfc:wkt :Di.

Value of the NDEF Record ID field, an empty st r if not set.

A bytes object containing the NDEF Record PAYLOAD encoded from the current attributes.

vendor_name

Get or set the device vendor name str.

model_ name

Get or set the device model name st r.

unique_name

Get or set the device unique name str.

uuid_string

Get or set the universially unique identifier st r.

version_string

Get or set the device firmware version str.

10

Chapter 2. Known Record Types

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
http://nfc-forum.org/
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

ndeflib documentation, Release 0.3.3

undefined_data_elements
A list of undefined data elements as named tuples with data_type and data_bytes attributes. This is a
reference to the internal list and may thus be updated in-place but it is strongly recommended to use the
add_undefined_data_element method with data_type and data_bytes validation. It would also not be safe
to rely on such implementation detail.

add_undefined_data_element (data_type, data_bytes)
Add an undefined (reserved future use) device information data element. The data_type must be an an
integer in range(5, 256). The data_bytes argument provides the up to 255 octets to transmit.

Undefined data elements should not normally be added. This method is primarily here to allow data
elements defined by future revisions of the specification before this implementation is updated.

>>> import ndef

>>> record = ndef.DeviceInformationRecord('Sony', 'RC-S380")
>>> record.unique_name = 'Black NFC Reader connected to PC'

>>> record.uuild_string = '123e4567-e89%0-12d3-a456-426655440000"
>>> record.version_string = 'NFC Port-100 v1.02'

>>> len(b''.Jjoin (ndef.message_encoder ([record])))

92

2.5 Connection Handover

The NFC Forum Connection Handover specification defines a number of Record structures that are used to exchange
messages between Handover Requester, Selector and Mediator devices to eventually establish alternative carrier con-
nections for additional data exchange. Generally, a requester device sends a Handover Request Message to announce
supported alternative carriers and expects the selector device to return a Handover Select Message with a selection of
alternative carriers supported by both devices. If the two devices are not close enough for NFC communication, a third
device may use the Handover Mediation and Handover Initiate Messages to relay information between the two.

Any of above mentioned Handover Messages is constructed as an NDEF Message where the first record associates the
processing context. The Handover Request, Select, Mediation, and Initiate Record classes implement the appropriate
context, i.e. record types known by context are decoded by associated record type classes while others are decoded as
generic NDEF Records.

2.5.1 Handover Request Record

The Handover Request Record is the first record of a connection handover request message. Information enclosed
within the payload of a handover request record includes the handover version number, a random number for resolving
a handover request collision (when both peer devices simultaenously send a handover request message) and a number
of references to alternative carrier information records subsequently encoded in the same message.

>>> import ndef

>>> from os import urandom

>>> wsc = 'application/vnd.wfa.wsc'

>>> message = [ndef.HandoverRequestRecord('l.3', urandom(2))]

>>> message.append (ndef.HandoverCarrierRecord(wsc, None, 'wifi'))
>>> message[0] .add_alternative_carrier('active', message[l].name)

class ndef.HandoverRequestRecord (version="1.3", crn=None, *alternative_carrier)
Initialize the record with a version number, a collision resolution random number crn and zero or more alter-
native_carrier. The version number can be set as an 8-bit integer (with 4-bit major and minor part), or as a
'"{major}.{minor}"' version string. An alternative carrier is given by a tuple with carrier power state,

2.5. Connection Handover 11

http://nfc-forum.org/

ndeflib documentation, Release 0.3.3

carrier data reference and zero or more auxiliary data references. The collision resolution number (crn) argu-
ment is the unsigned 16-bit random integer for connection handover version ‘1.2’ or later, for any prior version
number it must be None.

Parameters
e version (int or str)-handover version number
e crn (int) - collision resolution random number

* alternative_carrier (tuple) — alternative carrier entry

type
The Handover Request Record type is urn:nfc:wkt : Hr.

name
Value of the NDEF Record ID field, an empty st r if not set.

data
A bytes object containing the NDEF Record PAYLOAD encoded from the current attributes.

hexversion
The version as an 8-bit integer with 4-bit major and minor part. This is a read-only attribute.

version_info
The version as a named tuple with major and minor version number attributes. This is a read-only attribute.

version_string
The version as the ‘{major}.{minor}’ formatted string. This is a read-only attribute.

collision_resolution_number
Get or set the random number for handover request message collision resolution. May be None if the
random number was neither decoded or set.

alternative_carriers
A list of alternative carriers with attributes carrier_power_state, carrier_data_reference, and auxil-
iary_data_reference list.

add_alternative_carrier(cps, cdr, xadr):
Add a reference to a carrier data record within the handover request message. The carrier data reference cdr
is the name (NDEF Record ID) of the carrier data record. The carrier power state cps is either ‘inactive’,
‘active’, ‘activating’, or ‘unknown’. Any number of auxiliary data references adr may be added to link
with other records in the message that carry information related to the carrier.

2.5.2 Handover Select Record

The Handover Select Record is the first record of a connection handover select message. Information enclosed within
the payload of a handover select record includes the handover version number, error reason and associated error data
when processing of the previously received handover request message failed, and a number of references to alternative
carrier information records subsequently encoded in the same message.

>>> import ndef

>>> carrier = ndef.Record('mimetype/subtype', 'ref', b'1234")
>>> message = [ndef.HandoverSelectRecord('1.3"), carrier]

>>> message[0] .add_alternative_carrier('active', carrier.name)

class ndef.HandoverSelectRecord (version="1.3’, error=None, *alternative_carrier)
Initialize the record with a version number, an error information tuple, and zero or more alternative_carrier.
The version number can be either an 8-bit integer (4-bit major, 4-bit minor), or a ' {major}.{minor}"'
version string. An alternative carrier is given by a tuple with carrier power state, carrier data reference and

12 Chapter 2. Known Record Types

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#list

ndeflib documentation, Release 0.3.3

zero or more auxiliary data references. The error argument is a tuple with error reason and error data. Error
information, if not None, is encoded as the local Error Record after all given alternative carriers.

Parameters
e version (int or str)-—handover version number
e error (tuple) — error reason and data

* alternative_carrier (tuple) — alternative carrier entry

type
The Handover Select Record type is urn:nfc:wkt : Hs.

name
Value of the NDEF Record ID field, an empty st r if not set.

data
A bytes object containing the NDEF Record PAYLOAD encoded from the current attributes.

hexversion
The version as an 8-bit integer with 4-bit major and minor part. This is a read-only attribute.

version_info
The version as a named tuple with major and minor version number attributes. This is a read-only attribute.

version_string
The version as the ‘{major}.{minor}’ formatted string. This is a read-only attribute.

error
Either error information or None. Error details can be accessed with error.error_reason
and error.error_data. Formatted error information is provided with error.

error_reason_string.

set_error (error_ reason, error _data):
Set error information. The error_reason argument is an 8-bit integer value but only values 1, 2 and 3
are defined in the specification. For defined error reasons the error_data argument is the associated value
(which is a number in all cases). For undefined error reason values the error_data argument is bytes.
Error reason value O is strictly reserved and never encoded or decoded.

alternative_carriers
A list of alternative carriers with attributes carrier_power_state, carrier_data_reference, and auxil-
iary_data_reference list.

add_alternative_carrier(cps, cdr, xadr):
Add a reference to a carrier data record within the handover select message. The carrier data reference cdr
is the name (NDEF Record ID) of the carrier data record. The carrier power state cps is either ‘inactive’,
‘active’, ‘activating’, or ‘unknown’. Any number of auxiliary data references adr may be added to link
with other records in the message that carry information related to the carrier.

2.5.3 Handover Mediation Record

The Handover Mediation Record is the first record of a connection handover mediation message. Information en-
closed within the payload of a handover mediation record includes the version number and zero or more references to
alternative carrier information records subsequently encoded in the same message.

>>>
>>>
>>>
>>>

import ndef

carrier = ndef.Record('mimetype/subtype', 'ref', b'1234")
message = [ndef.HandoverMediationRecord('1.3'"), carrier]
message[0] .add_alternative_carrier('active', carrier.name)

2.5.

Connection Handover 13

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#list

ndeflib documentation, Release 0.3.3

class ndef.HandoverMediationRecord (version="1.3’, *alternative_carrier)

Initialize the record with version number and zero or more alternative_carrier. The version number can be
either an 8-bit integer (4-bit major, 4-bit minor), or a ' {major}.{minor} ' version string. An alternative
carrier is given by a tuple with carrier power state, carrier data reference and zero or more auxiliary data
references.

Parameters
* version (int or str)-—handover version number
* alternative_carrier (tuple) — alternative carrier entry

type
The Handover Select Record type is urn:nfc:wkt : Hm.

name
Value of the NDEF Record ID field, an empty st r if not set.

data
A bytes object containing the NDEF Record PAYLOAD encoded from the current attributes.

hexversion
The version as an 8-bit integer with 4-bit major and minor part. This is a read-only attribute.

version_info
The version as a named tuple with major and minor version number attributes. This is a read-only attribute.

version_string
The version as the ‘{major}.{minor}’ formatted string. This is a read-only attribute.

alternative_carriers
A list of alternative carriers with attributes carrier_power_state, carrier_data_reference, and auxil-
iary_data_reference list.

add_alternative_carrier (cps, cdr, =xadr):
Add a reference to a carrier data record within the handover mediation message. The carrier data reference
cdr is the name (NDEF Record ID) of the carrier data record. The carrier power state cps is either ‘inactive’,
‘active’, ‘activating’, or ‘unknown’. Any number of auxiliary data references adr may be added to link
with other records in the message that carry information related to the carrier.

2.5.4 Handover Initiate Record

The Handover Initiate Record is the first record of a connection handover initiate message. Information enclosed
within the payload of a handover initiate record includes the version number and zero or more references to alternative
carrier information records subsequently encoded in the same message.

>>>
>>>
>>>
>>>

import ndef

carrier = ndef.Record('mimetype/subtype', 'ref', b'1234")
message = [ndef.HandoverInitiateRecord('1.3'), carrier]
message[0] .add_alternative_carrier ('active', carrier.name)

class ndef.HandoverInitiateRecord (version="1.3’, *alternative_carrier)

Initialize the record with version number and zero or more alternative_carrier. The version number can be
either an 8-bit integer (4-bit major, 4-bit minor), or a ' {major}.{minor} ' version string. An alternative
carrier is given by a tuple with carrier power state, carrier data reference and zero or more auxiliary data
references.

Parameters

e version (int or str)-handover version number

14

Chapter 2. Known Record Types

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

ndeflib documentation, Release 0.3.3

* alternative_carrier (tuple) — alternative carrier entry

type
The Handover Select Record type is urn:nfc:wkt : Hi.

name
Value of the NDEF Record ID field, an empty st r if not set.

data
A bytes object containing the NDEF Record PAYLOAD encoded from the current attributes.

hexversion
The version as an 8-bit integer with 4-bit major and minor part. This is a read-only attribute.

version_info
The version as a named tuple with major and minor version number attributes. This is a read-only attribute.

version_string
The version as the ‘{major}.{minor}” formatted string. This is a read-only attribute.

alternative_carriers
A list of alternative carriers with attributes carrier_power_state, carrier_data_reference, and auxil-
iary_data_reference list.

add_alternative_carrier (cps, cdr, =*adr):
Add a reference to a carrier data record within the handover initiate message. The carrier data reference cdr
is the name (NDEF Record ID) of the carrier data record. The carrier power state cps is either ‘inactive’,
‘active’, ‘activating’, or ‘unknown’. Any number of auxiliary data references adr may be added to link
with other records in the message that carry information related to the carrier.

2.5.5 Handover Carrier Record

The Handover Carrier Record allows a unique identification of an alternative carrier technology in a handover request
message when no carrier configuration data is to be provided. If the handover selector device has the same carrier
technology available, it would respond with a carrier configuration record with payload type equal to the carrier
type (that is, the triples (TNF, TYPE_LENGTH, TYPE) and (CTF, CARRIER_TYPE_LENGTH, CARRIER_TYPE)
match exactly).

>>> import ndef

>>> record = ndef.HandoverCarrierRecord('application/vnd.wfa.wsc'")

>>> record.name = 'wlan'

>>> print (record)

NDEF Handover Carrier Record ID 'wlan' CARRIER 'application/vnd.wfa.wsc' DATA 0 byte

class ndef.HandoverCarrierRecord (carrier_type, carrier_data=None, reference=None)
Initialize the HandoverCarrierRecord with carrier_type, carrier_data, and a reference that sets the Record.
name attribute. The carrier type has the same format as a record type name, i.e. the combination of NDEF
Record TNF and TYPE that is used by the Record. t ype attribute. The carrier_data argument must be a valid
bytearray initializer, or None.

Parameters
* carrier_type (str)—initial value of the carrier type attribute
* carrier data (sequence) —initial value of the carrier_data attribute

e reference (str) — initial value of the the name attribute

type
The Handover Select Record type is urn:nfc:wkt : He.

2.5. Connection Handover 15

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#bytearray
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

ndeflib documentation, Release 0.3.3

name
Value of the NDEF Record ID field, an empty st r if not set. The reference init argument can also be used
to set this value.

data
A bytes object containing the NDEF Record PAYLOAD encoded from the current attributes.

carrier_type
Get or set the carrier type as a Record. t ype formatted representation of the Handover Carrier Record
CTF and CARRIER_TYPE fields.

carrier_ data
Contents of the Handover Carrier Record CARRIER_DATA field as a byt earray. The attribute itself is
read-only but the content may be modified or expanded.

2.6 Bluetooth Secure Simple Pairing

Note: This is “work in progress” towards version 0.3

New in version 0.3.

2.6.1 Introduction

Bluetooth Secure Simple Pairing (SSP) has been introduced in Bluetooth Core Specification Version 2.1 + EDR as
a method by which two Bluetooth devices can establish secure communication. With Bluetooth Core Specification
Version 4.0 this was extended to cover Bluetooth Low Energy devices.

Bluetooth Secure Simple Pairing defines four different association models, one of them is using an out-of-band channel
such as NFC. Secure Simple Pairing introduced in Bluetooth Version 2.1 + EDR uses Elliptic Curve Diffie-Hellman
with curve P-192. Bluetooth Version 4.1 added the Secure Connections feature, which upgraded Secure Simple Pairing
to utilize the P-256 elliptic curve. In either case the out-of-band communication transfers a public key commitment
through a 128-bit hash and randomizer prior to in-band public key exchange. Bluetooth BR/EDR key generation is
performed in the Controller. Bluetooth Low Energy, introduced with Core Specification Version 4.0, uses a Security
Manager component on the device host to generate keys. Three pairing methods - Just Works, Passkey Entry, and Out
of Band - were initially defined with protection levels depending on the secrecy of temporary keys exchanged while
pairing. Bluetooth Version 4.2 then added LE Secure Connections with the same pairing methods and P-256 based
Elliptic Curve Diffie-Hellman as for BR/EDR Secure Connections.

Bluetooth pairing is the process of connecting with a Bluetooth devices that has been found by device discovery. The
discovery process provides the identity of the other device. The pairing process then yields a shared secret that is used
to derive encryption keys. There are four pairing methods: Numeric Comparision, Just Works, Passkey Entry, and Out
of Band. Numeric Comparision protects against man-in-the-middle by having the user confirm equality of a six digit
number displayed on both devices. Just Works is basically the same but the number is not shown for confirmation.
Passkey Entry requires one device to have a keypad and the other to have a display. A number entered into the keypad
is shown on the other device for confirmation. Out of Band uses some external communication means to ensure that
key material exchanged in-band belongs to the adressed communication partner.

NFC is a perfect fit for an out-of-band communication channel for Bluetooth device pairing. NFC communication only
starts when two devices are in very close proximity, literally touched to each other, but works without any discovery,
device selection or confirmation steps. NFC is comparatively slow and it is not always convinient to keep proximity
for a longer period of time. So Bluetooth is also a perfect fit for NFC when larger or longer data transfers are requested.
From an NFC point of view this is Connection Handover with Bluetooth out-of-band data transmitted as an alternative
carrier.

16 Chapter 2. Known Record Types

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytearray

ndeflib documentation, Release 0.3.3

Connection Handover may be performed between two NFC Devices (negotiated handover) or one NFC Device and
another device that has an NFC Tag attached (static handover). In negotiated handover, the NFC Device that wants to
establish an alternative connection sends a Connection Handover Request and waits for a Connection Handover Select
message. In static handover, the NFC Device reads a Connection Handover Select message from the NFC Tag.

Bluetooth BR/EDR Out-of-Band Data

Table 1: Bluetooth BR/EDR Secure Simple Pairing OOB Data

Element Size Description

OOB Data Length 2 Total length of OOB data including the Length
field

Bluetooth Address 6 The 48-bit Bluetooth Device Address (MAC
Address)

OOB Optional Data N Additional OOB data as Extended Inquiry Re-
sponse!

EIR 0x02 or 0x03 — Incomplete or Complete List of 16-bit Service Class UUIDs
EIR 0x04 or 0x05 — Incomplete or Complete List of 32-bit Service Class UUIDs
EIR 0x06 or 0x07 — Incomplete or Complete List of 128-bit Service Class UUIDs
EIR 0x08 or 0x09 — Shortened or Complete Bluetooth Local Name

EIR 0x0D — Class of Device

EIR 0xOE — Simple Pairing Hash C-192

EIR 0xOF — Simple Pairing Randomizer R-192

EIR 0x1D — Simple Pairing Hash C-256

EIR 0x1E — Simple Pairing Randomizer R-256

<< Other EIR data types >>

Bluetooth LE Out-of-Band Data

Table 2: Bluetooth AD Types for OOB Pairing over NFC

AD Type Significance | Description

0x1B Mandatory LE Bluetooth Device Address

0x1C Mandatory LE Role

0x10 Optional Security Manager TK Value (LE legacy pairing)
0x19 Optional Appearance

0x01 Optional Flags

0x08 or 0x09 | Optional Shortened or Complete Bluetooth Local Name
0x22 Optional LE Secure Connections Confirmation Value
0x23 Optional LE Secure Connections Random Value

<< Other AD types >>

2.6.2 NDEF Records

class ndef.bluetooth.BluetoothRecord

A base class implementing

used directly as an NDEF record type.

dictionary-like
BluetoothEasyPairingRecord and the BluetoothLowEnergyRecord.

EIR/AD data

type

! Data elements within an Extended Inquiry Response are in no specific order. The order shown is only for illustration.

2.6. Bluetooth Secure Simple Pairing

access
It should not be

ndeflib documentation, Release 0.3.3

Dictionary-like access works with either numeric or text keys. Numeric keys are defined in Bluetooth As-
signed Numbers under Generic Access Profile. Recognized text keys are the data type names that are given by
attribute_names.

>>> import ndef

>>> dict_like = ndef.bluetooth.BluetoothRecord ()

>>> dict_1like[0x09] = b'Device Name'

>>> dict_like.get ('Complete Local Name')

b'Device Name'

>>> dict_like.get ('Shortened Local Name', b'default name')

b'default name'

>>> [dict_like.get (name) for name in dict_like.attribute_names if name in dict_
—like]

[b'Device Name']

attribute_names
Returns all Bluetooth EIR/AD data type names that may be used as text keys. Note that ‘Simple Pairing
Hash C’ and ‘Simple Pairing Hash C-192 as well as ‘Simple Pairing Randomizer R’ and ‘Simple Pairing
Randomizer R-192’ resolve to the same numeric key, respectively.

>>> import ndef

>>> print ('\n'.Jjoin (sorted(ndef.bluetooth.BluetoothRecord() .attribute_names)))
Appearance

Class of Device

Complete List of 128-bit Service Class UUIDs
Complete List of 16-bit Service Class UUIDs
Complete List of 32-bit Service Class UUIDs
Complete Local Name

Flags

Incomplete List of 128-bit Service Class UUIDs
Incomplete List of 16-bit Service Class UUIDs
Incomplete List of 32-bit Service Class UUIDs
LE Bluetooth Device Address

LE Role

LE Secure Connections Confirmation Value

LE Secure Connections Random Value
Manufacturer Specific Data

Security Manager Out of Band Flags

Security Manager TK Value

Shortened Local Name

Simple Pairing Hash C

Simple Pairing Hash C-192

Simple Pairing Hash C-256

Simple Pairing Randomizer R

Simple Pairing Randomizer R-192

Simple Pairing Randomizer R-256

Easy Pairing Record

class ndef.BluetoothEasyPairingRecord (device_address, *eir)

This class decodes and encodes Bluetooth BR/EDR Secure Simple Pairing Out-of-Band data and provides access
to the embedded information.

A BluetoothEasyPairingRecord must be initialized with at least the Bluetooth Device Address as the
first argument. Any following arguments are expected to be key-value tuples where the key may be an EIR data
type number or a recognized data type name and the value must be a byt es object with the corresponding data
type octets (in little endian order for multi-byte values)..

18

Chapter 2. Known Record Types

https://www.bluetooth.com/specifications/assigned-numbers
https://www.bluetooth.com/specifications/assigned-numbers
https://docs.python.org/3/library/stdtypes.html#bytes

ndeflib documentation, Release 0.3.3

>>> import ndef

>>> eir_list = [(0x0D, b'\x04\x01\x12'), ('Shortened Local Name', b'My Blue')]
>>> record = ndef.BluetoothEasyPairingRecord('01:02:03:04:05:06"', *eir_list)
>>> record['Incomplete List of 16-bit Service Class UUIDs'] = b'\x0A\x11l'

>>> print (record)

NDEF Bluetooth Easy Pairing Record ID '' Attributes 0x02 0x08 0xO0D

>>> octets = b''.join(ndef.message_encoder ([record]))

>>> print (list (ndef.message_decoder (octets)) [0])

NDEF Bluetooth Easy Pairing Record ID '' Attributes 0x02 0x08 0xO0D

type

The read-only Bluetooth Easy Pairing Record type.

>>> record.type
'application/vnd.bluetooth.ep.oob'

name
Value of the NDEF Record ID field, an empty st r if not set.

>>> record.name = 'Easy Pairing Record'
>>> record.name
'Easy Pairing Record'

device_address
The DeviceAddress decoded from or to be encoded into the out-of-band BD_ADDR field.

>>> record.device_address = '01:02:03:04:05:06"
>>> record.device_address
ndef.bluetooth.DeviceAddress ('01:02:03:04:05:06"', 'public')

device_name
Get or set the Bluetooth Local Name.

The Local Name, if configured on the Bluetooth device, is the name that may be displayed to the device
user as part of the Ul involving operations with Bluetooth devices. It may be encoded as either ‘Complete
Local name’ or ‘Shortened Local Name’ EIR data type.

This attribute provides the Local Name as a text string. The value returned is the ‘Complete Local Name’
or ‘Shortened Local Name’ evaluated in that order. None is returned if neither EIR data type exists.

A device name assigned to this attribute is always stored as the ‘Complete Local Name’ and removes a
‘Shortened Local Name’ EIR data type if formerly present.

>>> record['Shortened Local Name'] = b'shortened name'
>>> record.device_name

'shortened name'

>>> record.device_name = "My \u2039BR/EDR\u203a Device"
>>> record.device_name

'My <BR/EDR> Device'

>>> assert record.get ('Shortened Local Name') is None
>>> record|['Complete Local Name']

b'My \xe2\x80\xb9BR/EDR\xe2\x80\xba Device'

device_class
Get or set the Bluetooth Class of Device information. Reading returns a DeviceClass object. The
attribute may be set to either a DeviceClass object or the 24-bit Class of Device integer value. If the
Bluetooth Class of Device EIR data type is not present when reading, the attribute is ndef .bluetooth.
DeviceClass (0x000000).

2.6. Bluetooth Secure Simple Pairing 19

https://docs.python.org/3/library/stdtypes.html#str

ndeflib documentation, Release 0.3.3

>>> record.device_class

ndef.bluetooth.DeviceClass (0x120104)

>>> ndef.bluetooth.DeviceClass.decode (record.get ('Class of Device'))
ndef.bluetooth.DeviceClass (0x120104)

>>> record.device_class = 0x120104

service_class_list

A read-only list of ServiceClass instances build from all available Bluetooth Service Class UUID
attributes (complete/incomplete and 16/32/128 bit EIR/AD types).

>>> record.service_class_list
[ndef.bluetooth.ServiceClass ('0000110a-0000-1000-8000-00805f9034fb")]

add_service_class (service_class, complete=False)

Add a service_class identifier and set the resulting list of 16, 32 or 128 bit Service Class UUIDs to either
complete or incomplete. The service_class argument must be a ServiceClass or an initializer thereof.

>>> assert 'Incomplete List of 16-bit Service Class UUIDs' in record

>>> assert 'Complete List of 16-bit Service Class UUIDs' not in record
>>> record.add_service_class (0x110B, complete=True)

>>> assert 'Incomplete List of 16-bit Service Class UUIDs' not in record
>>> assert 'Complete List of 16-bit Service Class UUIDs' in record

>>> [sc.name for sc in record.service_class_list]

['Audio Source', 'Audio Sink']

simple_pairing hash_192

Get or set the Simple Pairing Hash C-192.

The Simple Pairing Hash C-192 is a commitment of the device’s public key computed as HMAC-SHA-256
for the Curve-192 ECPK and Randomizer R-192. The Hash C should be generated anew for each pairing.

This attribute returns either the 128-bit integer converted from the 16-octet ‘Simple Pairing Hash C-192’
EIR value or None if the EIR data type is not present. When set, it stores a 128-bit integer as the 16-octet
value of the ‘Simple Pairing Hash C-192” EIR data type.

>>> record.simple_pairing hash_192 = 0x1234567890ABCDEF1234567890ABCDEF
>>> record.get ('Simple Pairing Hash C-192"') .hex ()
'efcdab9078563412efcdab9078563412"

simple_pairing randomizer_ 192

Get or set the Simple Pairing Randomizer R-192.

If both devices transmit and receive data over NFC, then mutual authentication is based on the commit-
ments of the public keys by Hash C exchanged out-of-band. If one device can only send information
(typically an NFC Tag that is read by the other device), then authentication of the reading device will be
based on that device knowing a random number R read from the NFC Tag. In this case, R must be secret:
it can be created afresh every time (if the NFC Tag content can be modified by the host), or access to the
device sending R must be restricted. Generally, if R is not sent by a device it is assumed to be 0 by the
device receiving the out-of-band information.

The Simple Pairing Randomizer R-192 is used with P192 Elliptic Curve Diffie Hellmann.

This attribute returns either the 128-bit integer converted from the 16-octet ‘Simple Pairing Randomizer
R-192’ EIR value or None if the EIR data type is not present. When set, it stores a 128-bit integer as the
16-octet value of the ‘Simple Pairing Randomizer R-192’ EIR data type.

20

Chapter 2. Known Record Types

ndeflib documentation, Release 0.3.3

>>> record.simple_pairing randomizer_ 192 = 0x010203040506070809000A0BOCODOEQF
>>> record.get ('Simple Pairing Randomizer R-192"') .hex()
'0f0e0d0c0b0a00090807060504030201"'

simple_pairing hash_256
Get or set the Simple Pairing Hash C-256.

The Simple Pairing Hash C-256 is a commitment of the device’s public key computed as HMAC-SHA-256
for the Curve-256 ECPK and Randomizer R-256. The Hash C should be generated anew for each pairing.

This attribute returns either the 128-bit integer converted from the 16-octet ‘Simple Pairing Hash C-256’
EIR value or None if the EIR data type is not present. When set, it stores a 128-bit integer as the 16-octet
value of the ‘Simple Pairing Hash C-256" EIR data type.

>>> record.simple_pairing _hash_256 = 0x1234567890ABCDEF1234567890ABCDEF
>>> record.get ('Simple Pairing Hash C-256") .hex()
'efcdab9078563412efcdab9078563412"

simple_pairing randomizer_256
Get or set the Simple Pairing Randomizer R-256.

If both devices transmit and receive data over NFC, then mutual authentication is based on the commit-
ments of the public keys by Hash C exchanged out-of-band. If one device can only send information
(typically an NFC Tag that is read by the other device), then authentication of the reading device will be
based on that device knowing a random number R read from the NFC Tag. In this case, R must be secret:
it can be created afresh every time (if the NFC Tag content can be modified by the host), or access to the
device sending R must be restricted. Generally, if R is not sent by a device it is assumed to be 0 by the
device receiving the out-of-band information.

The Simple Pairing Randomizer R-256 is used with P256 Elliptic Curve Diffie Hellmann.

This attribute returns either the 128-bit integer converted from the 16-octet ‘Simple Pairing Randomizer
R-256 EIR value or None if the EIR data type is not present. When set, it stores a 128-bit integer as the
16-octet value of the ‘Simple Pairing Randomizer R-256" EIR data type.

>>> record.simple_pairing_randomizer_256 = 0x010203040506070809000A0BOCODOEQF
>>> record.get ('Simple Pairing Randomizer R-256"') .hex()
'0£f0e0d0c0b0a00090807060504030201"

Low Energy Record

class ndef.BluetoothLowEnergyRecord (device_address, *advertising_data)

>>> import ndef

>>> record = ndef.BluetoothLowEnergyRecord((0x08, b'My Blue'), (0x0D, b'100420"))
>>> print (record)

NDEF Bluetooth Low Energy Record ID '' Attributes 0x08 0x0D

type
The read-only Bluetooth Low Energy Record type.

>>> record.type
'application/vnd.bluetooth.le.oob'

name
Value of the NDEF Record ID field, an empty st r if not set.

2.6. Bluetooth Secure Simple Pairing 21

https://docs.python.org/3/library/stdtypes.html#str

ndeflib documentation, Release 0.3.3

>>> record.name = 'BLE Record’
>>> record.name
'BLE Record'

device_address

Get or set the LE Bluetooth Device Address.

The LE Bluetooth Device Address data value consists of 7 octets made up from the 48 bit address that is
used for Bluetooth pairing over the LE transport and a flags octet that defines the address type. The address
type distinguishes a Public Device Address versus a Random Device Address. A Random Device Address
sent with BLE out-of-band data should be used on the LE transport for at least ten minutes after the NFC
data exchange.

This attribute returns a DeviceAddress or None, depending on whether the ‘LE Bluetooth Device
Address’ AD type is present or not (under rare circumstances or just by failure it may not be). The
device_address attribute may be set by assigning it another DeviceAddress, a tuple of address and
address type strings, or a sole address string which implies a public address type.

>>> record.device_address = '01:02:03:04:05:06"

>>> record.device_address

ndef.bluetooth.DeviceAddress ('01:02:03:04:05:06"', 'public')
>>> record.device_address = ('01:02:03:04:05:06", 'random')
>>> record.device_address

ndef.bluetooth.DeviceAddress ('01:02:03:04:05:06"', 'random')

device_name

Get or set the Bluetooth Local Device Name.

The Local Name, if configured on the Bluetooth device, is the name that may be displayed to the device
user as part of the Ul involving operations with Bluetooth devices. It may be encoded as either ‘Complete
Local name’ or ‘Shortened Local Name’ AD type.

This attribute provides the Local Name as a text string. The value returned is the ‘Complete Local Name’
or ‘Shortened Local Name’ evaluated in that order. None is returned if neither AD type exists.

A device name assigned to this attribute is always stored as the ‘Complete Local Name’ and removes a
‘Shortened Local Name’ AD type if formerly present.

>>> record['Shortened Local Name'] = b'shortened name'
>>> record.device_name

'shortened name'

>>> record.device_name = "My \u2039BLE\u203a Device"
>>> record.device_name

'My <BLE> Device'

>>> assert record.get ('Shortened Local Name') is None
>>> record.get ('Complete Local Name')

b'My \xe2\x80\xb9BLE\xe2\x80\xba Device'

appearance

Get or set the representation of the external appearance of the device, used by the discovering device to
represent an icon, string, or similar to the user. The returned value is a tuple with the numeric value and
a textual description, or None if the ‘Appearance’ AD type is not found. The appearance attribute accepts
either a numeric value or a description string.

Appearance strings consist of a generic category and an optional subtype. If a subtype is present it follows
the generic category text after a colon.

22

Chapter 2. Known Record Types

https://docs.python.org/3/library/constants.html#None

ndeflib documentation, Release 0.3.3

>>> record['Appearance'] = b'\x81\x03'
>>> print (record.appearance)

(897, 'Blood Pressure: Arm')
>>> print ("category '{0/
—split(': ')))
category 'Blood Pressure' subtype 'Arm'
>>> record.appearance = "Thermometer"
>>> record|['Appearance']

b'\x00\x03"

>>> record.appearance = 0x0280

>>> print (record.appearance)

(640, 'Media Player')

}'".format (record.appearance[1l].

appearance_strings
A list of all known appearance strings that may be assigned to appearance.

>>> print ('\n'.join (record.appearance_strings))
Unknown

Phone

Computer

Watch

Watch: Sports Watch

Clock

Display

Remote Control

Eye—-glasses

Tag

Keyring

Media Player

Barcode Scanner

Thermometer

Thermometer: Ear

Heart Rate Sensor

Heart Rate Sensor: Belt

Blood Pressure

Blood Pressure: Arm

Blood Pressure: Wrist

Human Interface Device

Human Interface Device: Keyboard
Human Interface Device: Mouse

Human Interface Device: Joystick
Human Interface Device: Gamepad
Human Interface Device: Digitizer Tablet
Human Interface Device: Card Reader
Human Interface Device: Digital Pen
Human Interface Device: Barcode Scanner
Glucose Meter

Running Walking Sensor

Running Walking Sensor: In-Shoe
Running Walking Sensor: On-Shoe
Running Walking Sensor: On-Hip
Cycling

Cycling: Cycling Computer

Cycling: Speed Sensor

Cycling: Cadence Sensor

Cycling: Power Sensor

Cycling: Speed and Cadence Sensor

(continues on next page)

2.6. Bluetooth Secure Simple Pairing

23

ndeflib documentation, Release 0.3.3

(continued from previous page)

Pulse Oximeter

Pulse Oximeter: Fingertip

Pulse Oximeter: Wrist Worn

Weight Scale

Outdoor Sports

Outdoor Sports: Location Display Device

Outdoor Sports: Location and Navigation Display Device
Outdoor Sports: Location Pod

Outdoor Sports: Location and Navigation Pod

role_capabilities
Get or set the LE role capabilities of the device. The value is a string describing one of the four defined
roles Peripheral, Central, Peripheral/Central (Peripheral Role preferred for connection es-
tablishment), or Central/Peripheral (Central is preferred for connection establishment).

>>> record['LE Role'] = b'\x02'

>>> print (record.role_capabilities)

Peripheral/Central

>>> record.role_capabilities = "Central"

>>> assert record['LE Role'] == b'\x01'
flags

Get or set the Flags bitmap.

The ‘Flags’ AD type contains information on which discoverable mode to use and BR/EDR support and
capability. The attribute returns the numerical flags value and descriptions for raised bits as an N-tuple.
The attribute accepts either a numerical flags value or a tuple of description strings.

>>> record['Flags'] = b'\x05'"

>>> print (record.flags)

(5, 'LE Limited Discoverable Mode', 'BR/EDR Not Supported')

>>> record.flags = ("LE General Discoverable Mode",)

>>> record['Flags']

b'\x02"

>>> record.flags = 8

>>> print (record.flags)

(8, 'Simultaneous LE and BR/EDR to Same Device Capable (Controller)"')

security manager_ tk_value
Get or set the Security Manager TK Value.

The Security Manager TK Value is used by the LE Security Manager in the OOB association model with
LE Legacy pairing. Reading this attribute returns an unsigned integer converted from the 16 byte ‘Security
Manager TK Value’ AD type octets, or None if the AD type is not found. An unsigned integer assigned to
this attribute is written as the 16 byte ‘Security Manager TK Value’ AD type after conversion.

>>> record.security_manager_tk_value = 0x1234567890ABCDEF1234567890ABCDEF
>>> record.get ('Security Manager TK Value') .hex()
'efcdab9078563412efcdab9078563412"'

>>> record.security_manager_tk_value
24197857200151252728969465429440056815

secure_connections_confirmation_vwvalue
Get or set the LE Secure Connections Confirmation Value.

The LE Secure Connections Confirmation Value is used by the LE Security Manager if the OOB associa-
tion model with LE Secure Connections pairing is used. Reading this attribute returns an unsigned integer

24 Chapter 2. Known Record Types

ndeflib documentation, Release 0.3.3

converted from the 16 byte ‘LE Secure Connections Confirmation Value’ AD type octets, or None if the
AD type is not found. An unsigned integer assigned to this attribute is written as the 16 byte ‘LE Secure
Connections Confirmation Value’ AD type after conversion.

>>> record.secure_connections_confirmation_value =
—0x1234567890ABCDEF1234567890ABCDEF

>>> record.get ('LE Secure Connections Confirmation Value') .hex()
'efcdab9078563412efcdab9078563412"

>>> record.secure_connections_confirmation_value
24197857200151252728969465429440056815

secure_connections_random_ value
Get the LE Secure Connections Random Value.

The LE Secure Connections Random Value is used by the LE Security Manager if the OOB association
model with LE Secure Connections pairing is used. Reading this attribute returns an unsigned integer
converted from the 16 byte ‘LE Secure Connections Random Value’ AD type octets, or None if the AD
type is not found. An unsigned integer assigned to this attribute is written as the 16 byte ‘LE Secure
Connections Random Value’ AD type after conversion.

>>> record.secure_connections_random_value =
—~0x1234567890ABCDEF1234567890ABCDEF

>>> record.get ('LE Secure Connections Random Value') .hex()
'efcdab9078563412efcdab9078563412"'

>>> record.secure_connections_random_value
24197857200151252728969465429440056815

[

2.6.3 Data Types
Device Address

class ndef.bluetooth.DeviceAddress (address, address_type=’public’)
Representation of a Bluetooth device address, either initialized with address and address_type or decoded from
octets. The address argument for initialization is a MAC address string with colons or dashes as separators. The
default address_type is ‘public’, for a Bluetooth LE address it may be set to ‘random’. Note that this only makes
a difference when encoding.

>>> import ndef
>>> print (ndef.bluetooth.DeviceAddress ('01:02:03:04:05:06"))
Device Address 01:02:03:04:05:06 (public)

static decode (octets)

Returns a DeviceAddress instance constructed from either a BD_ADDR (6 octets) or ‘LE Bluetooth
Device Address’ (7 octets).

>>> ndef.bluetooth.DeviceAddress.decode (b'\x06\x05\x04\x03\x02\x01")
ndef.bluetooth.DeviceAddress ('01:02:03:04:05:06"', 'public')

>>> ndef.bluetooth.DeviceAddress.decode (b'\x06\x05\x04\x03\x02\x01\x01")
ndef.bluetooth.DeviceAddress ('01:02:03:04:05:06"', 'random')

encode (context="LE’)
Returns the Bluetooth address as bytes in little endian order. The context argument determines the
encoding format. For a Bluetooth LE address seven bytes are returned and the last byte discriminates
between a public or random address. For BD_ADDR encoding the context must be ‘EP’ (for Easy Pairing).

2.6. Bluetooth Secure Simple Pairing 25

https://docs.python.org/3/library/stdtypes.html#bytes

ndeflib documentation, Release 0.3.3

>>> ndef.bluetooth.DeviceAddress ('01:02:03:04:05:06") .encode ('EP")
b'\x06\x05\x04\x03\x02\x01"

>>> ndef.bluetooth.DeviceAddress ('01:02:03:04:05:06") .encode ('LE")
b'\x06\x05\x04\x03\x02\x01\x00"

addr

Get or set the Bluetooth Device Address. The address is a string in typical MAC address notation, both :

and — are acceptable delimiters.

>>> bdaddr = ndef.bluetooth.DeviceAddress ('01:02:03:04:05:06")
>>> bdaddr.addr

'01:02:03:04:05:06"

>>> bdaddr.addr = '06-05-04-03-02-01"

>>> bdaddr.addr

'06:05:04:03:02:01"

type
Get or set the Bluetooth LE address type which may be either ‘public’ or ‘random’.

>>> bdaddr = ndef.bluetooth.DeviceAddress ('01:02:03:04:05:06", 'public'")
>>> bdaddr.type = 'random'

>>> pbdaddr

ndef.bluetooth.DeviceAddress ('01:02:03:04:05:06', 'random')

Device Class

class ndef.bluetooth.DeviceClass (cod)

Mapping of the Bluetooth ‘Class of Device’ information. An instance can be created with an integer argument
that represents the 24 bits of the Class of Device structure, or by decoding a 3-byte sequence with the 24 bits in

transmission order (little endian).

>>> import ndef
>>> print (ndef.bluetooth.DeviceClass (0x120104))
Device Class Computer - Desktop workstation - Networking and Object Transfer

static decode (octets)

Returns a DeviceClass instance with the 24 bits ‘Class of Device’ information decoded from octets.

The octets argument must be a bytes or bytearray object of length 3 and in little endian order.

>>> ndef.bluetooth.DeviceClass.decode (b'\x04\x01\x12")
ndef.bluetooth.DeviceClass (0x120104)

encode ()
Returns 3 bytes with the ‘Class of Device’ integer in little endian order.

>>> ndef.bluetooth.DeviceClass (0x120104) .encode ()
b'\x04\x01\x12"

major_device_class
The major device class string (read-only).

>>> ndef.bluetooth.DeviceClass (0x120104) .major_device_class
'Computer’

minor_device_class
The minor device class string (read-only).

26

Chapter 2. Known Record Types

https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytearray
https://docs.python.org/3/library/stdtypes.html#bytes

ndeflib documentation, Release 0.3.3

>>> ndef.bluetooth.DeviceClass (0x120104) .minor_device_class
'Desktop workstation'

major_service_class
A tuple of major service class strings (read-only).

>>> ndef.bluetooth.DeviceClass (0x120104) .major_service_class
("Networking', 'Object Transfer')

Service Class

class ndef.bluetooth.ServiceClass (*args, **kwargs)
The ServiceClass represents a single Bluetooth Service Class UUID. The first positional argument may be a
Bluetooth ‘uuid16’ or ‘uuid32’ integer, a Bluetooth service class name, or any of the UUID string formats
accepted by uuid . UUID. Alternatively, the same keyword arguments supported by uuid.UUID may be used.

>>> import ndef

>>> ndef.bluetooth.ServiceClass (0x110A)

ndef .bluetooth.ServiceClass ('0000110a-0000-1000-8000-00805f9p34fb")
>>> ndef.bluetooth.ServiceClass ("Audio Source")

ndef .bluetooth.ServiceClass ('0000110a-0000-1000-8000-00805f9b34fb"')

static decode (octets)

Returns a ServiceClass instance decoded from octets. The octets argument must be a bytes or
bytearray object of either length 2, 4, or 16 in little endian order.

>>> ndef.bluetooth.ServiceClass.decode (b'\x0A\x11")
ndef.bluetooth.ServiceClass ('0000110a-0000-1000-8000-00805£f9b34fb")

encode ()

Return the by tes representation of the Service Class UUID in little endian order. The number of octets
is 2 or 4 for a Bluetooth ‘uuid16’ or ‘uuid32’ and 16 for any other UUID value.

>>> ndef.bluetooth.ServiceClass (0x110A) .encode ()
b'\n\x11"

>>> ndef.bluetooth.ServiceClass (0x1000110A) .encode ()
b'\n\x11\x00\x10"

uuid
A uuid.UUID object that represents the Bluetooth Service Class UUID (read-only).

>>> ndef.bluetooth.ServiceClass (0x110A) .uuid
UUID('0000110a-0000-1000-8000-00805f9p34fb")

name

The Bluetooth Service Class UUID name (read-only). Depending on the UUID value this is either one of
names or the UUID string representation.

>>> ndef.bluetooth.ServiceClass (0x110A) .name
'Audio Source'

>>> ndef.bluetooth.ServiceClass (0x1000110A) .name
'1000110a-0000-1000-8000-00805f9b34fb"

static get_uuid names ()
Returns a tuple of all known Bluetooth Service Class UUID names.

2.6. Bluetooth Secure Simple Pairing 27

https://docs.python.org/3/library/uuid.html#uuid.UUID
https://docs.python.org/3/library/uuid.html#uuid.UUID
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytearray
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/uuid.html#uuid.UUID

ndeflib documentation, Release 0.3.3

A/V Remote Control

Audio Sink

Audio Source

Basic Imaging Profile
Basic Printing

Browse Group Descriptor
Common ISDN Access
Cordless Telephony
Dialup Networking
Direct Printing

ESDP UPNP IP LAP

ESDP UPNP IP PAN

ESDP UPNP L2CAP

Fax

GN

GNSS

GNSS Server

Generic Audio

Generic File Transfer
Generic Networking
Generic Telephony

HCR Print

HCR Scan

HDP

HDP Sink

HDP Source

Handsfree

Handsfree Audio Gateway

Headset

Headset - Audio Gateway
Headset - HS

Human Interface Device

Imaging Responder
Intercom

IrMC Sync

IrMC Sync Command

LAN Access Using PPP
Message Access Profile
Message Access Server

NAP

OBEX File Transfer
OBEX Object Push

PANU

Phonebook Access
Phonebook Access - PCE
Phonebook Access - PSE
PnP Information
Printing Status

A/V Remote Control Controller
A/V Remote Control Target
Advanced Audio Distribution

Direct Printing Reference

Hardcopy Cable Replacement

Imaging Automatic Archive
Imaging Referenced Objects

Message Notification Server

>>> print ('\n'.join(sorted(ndef.bluetooth.ServiceClass.get_uuid_names())))

(continues on next page)

28

Chapter 2. Known Record Types

ndeflib documentation, Release 0.3.3

(continued from previous page)

Reference Printing
Reflected UI

SIM Access

Serial Port
Service Discovery Server
UPNP IP Service
UPNP Service

Video Distribution
Video Sink

Video Source

WAP

WAP Client

2.7 Wi-Fi Simple Configuration

New in version 0.2.

2.7.1 Overview

The Wi-Fi Alliance developed the Wi-Fi Simple Configuration specification to simplify the security setup and man-
agement of wireless networks. It is branded as Wi-Fi Protected Setup and can be used in traditional infrastructure
networks as well as with Wi-Fi Direct. One of the three Wi-Fi Protected Setup methods uses NFC as an out-of-band
channel to provision Wi-Fi devices with the network credentials (see also this short intro). All details can be learned
from the Wi-Fi Alliance specifications.

The Wi-Fi Simple Configuration NFC out-of-band interface provides three usage models for provisioning an Enrollee,
a device seeking to join a WLAN domain, with WLAN credentials. Devices with the authority to issue and revoke
credentials are termed Registrar. A Registrar may be integrated into an Access Point.

Password Token

A Password Token carries an Out-of-Band Device Password from an Enrollee to an NFC-enabled Regis-
trar device. The device password is then used with the Wi-Fi in-band registration protocol to provision
network credentials; an NFC Interface on the Enrollee is not required.

Configuration Token

A Configuration Token carries unencrypted credential from an NFC-enabled Registrar to an NFC-enabled
Enrollee device. A Configuration Token is created when the user touches the Registrar to retrieve the
current network settings and allows subsequent configuration of one or more Enrollees.

Connection Handover

Connection Handover is a protocol run between two NFC Peer Devices to establish an alternative carrier
connection. The Connection Handover protocol is defined by the NFC Forum. Together with Wi-Fi
Simple Configuration it helps connect to a Wi-Fi Infrastructure Access Point or a Wi-Fi Direct Group
Owner.

Password Token

A Wi-Fi Password Token carries an NDEF Record with Payload Type “application/vnd.wfa.wsc” that contains an
Out-Of-Band Device Password from the Enrollee. When presented to an NFC-enabled Registrar, typically an Access
Point, the Wi-Fi in-band registration protocol uses the device password from the Password Token, instead of requiring

2.7. Wi-Fi Simple Configuration 29

http://www.wi-fi.org/
http://www.wi-fi.org/discover-wi-fi/wi-fi-protected-setup
http://www.wi-fi.org/discover-wi-fi/wi-fi-direct
http://www.wi-fi.org/knowledge-center/faq/how-does-wi-fi-protected-setup-work
http://www.wi-fi.org/discover-wi-fi/specifications
http://nfc-forum.org/

ndeflib documentation, Release 0.3.3

the user to manually input a password. Compared to manual input, a Password Token increases the effective security
strength of the registration protocol by allowing for longer passwords and no need for key pad compatible characters.

The contents of a Wi-Fi Password Token are shown below. A parser must not rely on any specific order of the attributes,
the order shown is only representational. Wi-Fi Attributes are encoded in the Wi-Fi Simple Configuration TLV Data
Format (a Type-Length-Value format with 16-bit Type and 16-bit Length fields).

Attribute Required/Conditional/Optional | Description
OOB Device Password R A TLV with fixed data structure'
Public Key Hash | R The Enrollee’s public key hash’
Password ID R A 16 bit identifier for the device password”
Device Password | R The zero or 16-32 octet long device password’
WFA Vendor Extension C Vendor Extension with Vendor ID 00:37:2A°
Version2 C Wi-Fi Simple Configuration version®
<other ...> o Other WFA Vendor Extension subelements
<other ...> o Other Wi-Fi Simple Configuration TLVs
Example

>>> import ndef

>>> import random

>>> import hashlib

>>> pkhash = hashlib.sha256 (b'my public key goes here').digest () [0:20]
>>> pwd_id = random.randint (16, 65535)

>>> my_pwd = b"long password can't guess"

>>> oobpwd = ndef.wifi.OutOfBandPassword (pkhash, pwd_id, my_pwd)

>>> wfaext = ndef.wifi.WifiAllianceVendorExtension((0, b'\x20'))
>>> record = ndef.WifiSimpleConfigRecord()

>>> record.name = 'my password token'

>>> record['oob-password'] = [oobpwd.encode ()]

>>> record['vendor-extension'] = [wfaext.encode()]

>>> print (record)
NDEF Wifi Simple Config Record ID 'my password token' Attributes 0x102C 0x1049

>>> octets = b''.join(ndef.message_encoder ([record]))
>>> len (octets)
105

Configuration Token

A Wi-Fi Configuration Token carries an NDEF Record with Payload Type “application/vnd.wfa.wsc” that contains
unencrypted credential(s) issued by an NFC-enabled Registrar. An NFC-enabled Enrollee uses the credential(s) to
directly connect to the Wi-Fi network without the need to run the Wi-Fi Simple Configuration registration protocol.

! The Out-Of-Band Device Password is a fixed data structure with three fields. The public key hash is in the first 20 octets. The password id
uses the next 2 octets. The remaining TLV Length minus 22 octets contain the device password. The device passowrd must be at least 16 and at
most 32 octets.

2 The Public Key Hash field contains the first 160 bits of the SHA-256 hash of the Enrollee’s public key that will be transmitted with message
M1 of the registration protocol.

4 The Password ID is an arbitrarily-selected number between 0x0010 and OxFFFFE. During the in-band registration protocol the Registrar sends
the Password ID back to the Enrollee to identify the device password that is being used.

3 The Device Password is zero length (absent) when used in negotiated connection handover between two Wi-Fi Peer To Peer devices, in which
case the Password ID is equal to NFC-Connection-Handover (0x0007).

5 The Wi-Fi Alliance Vendor Extension is a Vendor Extension Attribute with the first three octets (the Vendor ID) set to 00:37:2A (the Wi-Fi
Alliance OUI). The remaining octets hold WFA Vendor Extension sub-elements in a Type-Length-Value format with 8-bit Type and 8-bit Length
fields.

6 The Version2 Attribute contains the Wi-Fi Simple Configuration version in a I-octet field. The octet is split into the major version number
in the most significant 4 bits and the minor version number in the least significant 4 bits. The Attribute is encoded as a WFA Vendor Extension
sub-element with ID 0x00 and Length 0x01.

30 Chapter 2. Known Record Types

ndeflib documentation, Release 0.3.3

The contents of a Wi-Fi Configuration Token are shown below. A parser must not rely on any specific order of the
attributes, the order shown is only representational. Wi-Fi Attributes are encoded in the Wi-Fi Simple Configuration
TLV Data Format (a Type-Length-Value format with 16-bit Type and 16-bit Length fields).

Attribute Required/Conditional/Optional | Description
Credential R A single WLAN credential’
Network Index R Deprecated — always set to 1.
SSID R Network name (802.11 service set identifier).
Authentication Type R Network authentication type.
Encryption Type R Encryption capabilities.
Network Key R Encryption Key.
MAC Address R Enrollee’s or broadcast MAC address®
WFA Vendor Extension (0] Vendor Extension with WFA Vendor ID
00:37:2A
Key O Whether the key may be shared with other de-
Sharable vices
<other...> | O Other WFA Vendor Extension subelements
<other...> (0] Other Wi-Fi Simple Configuration TLVs

RF Bands (0] Operating band of the AP or P2P group owner.’

RF Channel (0] Operating channel of AP or P2P group owner.’

MAC Address (0] The BSSID of the AP or Wi-Fi P2P group

owner.’

WFA Vendor Extension C Vendor Extension with Vendor ID 00:37:2A°
Version2 C Wi-Fi Simple Configuration version®
<other...> (0] Other WFA Vendor Extension subelements

<other ...> (0] Other Wi-Fi Simple Configuration TLVs

Example

>>> import ndef

>>> credential = ndef.wifi.Credential ()

>>> credential.set_attribute ('network-index', 1)

>>> credential.set_attribute('ssid', b'my network name')

>>> credential.set_attribute ('authentication-type', 'WPA2-Personal')
>>> credential.set_attribute ('encryption-type', 'AES'")

>>> credential.set_attribute ('network-key', b'my secret password')

>>> credential.set_attribute('mac-address', b'\xFF\xFF\xFF\xFF\xFF\xFF')
>>> wfa_ext = ndef.wifi.WifiAllianceVendorExtension ()

>>> wfa_ext.set_attribute ('network-key-shareable', 1)

>>> credential['vendor-extension'] = [wfa_ext.encode()]

>>> print (credential)

Credential Attributes 0x1003 0x100F 0x1020 0x1026 0x1027 0x1045 0x1049
>>> record = ndef.wifi.WifiSimpleConfigRecord()

>>> record.name = 'my config token'

>>> record.set_attribute('credential', credential)

(continues on next page)

7 The Credential is a compound attribute that contains other Wi-Fi Simple Configuration TLVs. A parser must not assume any specific order of
the enclosed data elements.

8 This should be the Enrollee’s MAC address if the credential was specifically issued and will be valid only for the device with this MAC address.
This can only be if the Registrar has prior knowledge of the Enrollee’s MAC address and it’s only effective if the AP is also able to restrict use of
the credential to the provisioned device. In any other case the broadcast MAC address should be used.

° The optional RF Bands, AP Channel and MAC Address attributes may be included as hints to help the Station/Enrollee to find the AP without
a full scan. It is recommended to include those attributes if known. If the RF Bands attribute and AP Channel attribute are both included then the
RF Bands attribute indicates the band that the channel specified by the AP Channel attribute is in. If the RF Bands attribute is included without
the AP Channel attribute then it indicates the RF Bands in which the AP is operating with the network name specified by the SSID attribute in the
Credential.

2.7. Wi-Fi Simple Configuration 31

ndeflib documentation, Release 0.3.3

(continued from previous page)

>>> record.set_attribute('rf-bands', ('2.4GHz', '5.0GHz'"))

>>> wfa_ext = ndef.wifi.WifiAllianceVendorExtension ()

>>> wfa_ext.set_attribute('version-2', 0x20)

>>> record['vendor—-extension'] = [wfa_ext.encode ()]

>>> print (record)

NDEF Wifi Simple Config Record ID 'my config token' Attributes 0x100E 0x103C 0x1049

>>> octets = b''.join(ndef.message_encoder ([record]))
>>> len (octets)
139

Connection Handover

Two NFC Devices in close proximity establish NFC communication based on the NFC Forum Logical Link Con-
trol Protocol (LLCP) specification. If one of the devices has intention to activate a further communication method,
it can then use the NFC Forum Connection Handover protocol to announce possible communication means (poten-
tially including configuration data) and request the other device to respond with a selection of matching technologies,
including necessary configuration data.

An Enrollee NFC Device that has established NFC LLCP communication with a Registrar NFC Device sends a Con-
nection Handover Request Message indicating Wi-Fi communication capability. A Registrar NFC Device responds
with a Connection Handover Select Message indicating the Wi-Fi carrier which the Enrollee should associate with.
The Enrollee is then provisioned by the Registrar through in-band WSC protocol message exchange (with encrypted
ConfigData from the Registrar included in M2).

The following table shows the format of the Wi-Fi Carrier Configuration Record as transmitted within a Connection
Handover Request Message. The UUID-E attribute is included to assist with the discovery over 802.11 that follows
the exchange of the connection handover messages.

Attribute Required/Conditional/Optional | Description
OOB Device Password R A TLV with fixed data structure’
Public Key Hash | R The Enrollee’s public key hash?
Password ID R Set to NFC-Connection-Handover (0x0007)
UUID-E R Universally Unique Identifier of the Enrollee Device
WFA Vendor Extension R Vendor Extension with Vendor ID 00:37:2A°
Version2 R Wi-Fi Simple Configuration version®
<other ...> o Other WFA Vendor Extension subelements
<other ...> o Other Wi-Fi Simple Configuration TLVs
Example:

>>> import ndef

>>> import random

>>> import hashlib

>>> pkhash = hashlib.sha256(b'enrollee public key').digest () [0:20]
>>> oobpwd = ndef.wifi.OutOfBandPassword (pkhash, 0x0007, b'")

>>> wfaext = ndef.wifi.WifiAllianceVendorExtension(('version-2', b'\x20'))
>>> carrier = ndef.WifiSimpleConfigRecord()
>>> carrier.name = '0'

>>> carrier.set_attribute ('oob-password', oobpwd)

>>> carrier.set_attribute ('uuid-enrollee', '00010203-0405-0607-0809-0a0b0c0d0e0f")
>>> carrier['vendor-extension'] = [wfaext.encode()]

>>> print (carrier)

NDEF Wifi Simple Config Record ID 'O' Attributes 0x102C 0x1047 0x1049

(continues on next page)

32 Chapter 2. Known Record Types

ndeflib documentation, Release 0.3.3

(continued from previous page)

>>> hr = ndef.handover.HandoverRequestRecord('l.3', random.randint (0, Oxffff))
>>> hr.add_alternative_carrier ('active', carrier.name)

>>> octets = b''.join(ndef.message_encoder ([hr, carrier]))
>>> len (octets)
108

The Wi-Fi Carrier Configuration Record transmitted within a Connection Handover Select Message from Registrar
to Enrollee is shown below. The SSID attribute is included to assist with the discovery over 802.11 that follows the
exchange of the connection handover messages. Optionally the RF Bands attribute, the AP Channel attribute and the
MAC Address attribute may be included as hints to help the Enrollee find the AP without a full scan.

Attribute Required/Conditional/Optional | Description
OOB Device Password R A TLV with fixed data structure!
Public Key Hash | R The Registrar’s public key hash?
Password ID R Set to NFC-Connection-Handover (0x0007)
SSID R Service Set Identifier of the network to connect
RF Bands O Provides the operating RF band of the AP
AP Channel (0] Provides the operating channel of the AP
MAC Address O Basic Service Set Identifier of the AP
WFA Vendor Extension R Vendor Extension with Vendor ID 00:37:2A°
Version2 R Wi-Fi Simple Configuration version®
<other...> O Other WFA Vendor Extension subelements
<other ...> (0] Other Wi-Fi Simple Configuration TLVs
Example:

>>> import ndef

>>> import hashlib

>>> pkhash = hashlib.sha256 (b'registrar public key') .digest () [0:20]
>>> oobpwd = ndef.wifi.OutOfBandPassword (pkhash, 0x0007, b'")

>>> wfaext = ndef.wifi.WifiAllianceVendorExtension(('version-2', b'\x20'))
>>> carrier = ndef.WifiSimpleConfigRecord()
>>> carrier.name = '0'

>>> carrier.set_attribute
>>> carrier.set_attribute
>>> carrier.set_attribute('rf-bands', '2.4GHz'")

>>> carrier.set_attribute ('ap-channel', 6)

>>> carrier.set_attribute('mac-address', b'\1\2\3\4\5\6"'")

>>> carrier['vendor—-extension'] = [wfaext.encode ()]

>>> print (carrier)

NDEF Wifi Simple Config Record ID 'O' Attributes 0x1001 0x1020 0x102C 0x103C 0x1045
—0x1049

>>> hs = ndef.handover.HandoverSelectRecord('1.3")

>>> hs.add_alternative_carrier ('active', carrier.name)

>>> octets = b''.join(ndef.message_encoder ([hs, carrier]))

>>> len (octets)

120

'oob-password', oobpwd)

(
('ssid', b'802.11 network')
(
(

2.7.2 NDEF Record Classes

2.7. Wi-Fi Simple Configuration 33

ndeflib documentation, Release 0.3.3

Wi-Fi Simple Config Record

A WwifiSimpleConfigRecordholdsany number of Wi-Fi TLV (Type-Length-Value) Attributes which are defined
in the Wi-Fi Simple Configuration specification. It is organized as a dict with numeric Attribute ID or symbolic
attribute_names keys. Values are returned and must be set as a 1ist of bytes, where each bytes object
corresponds to one instance of the Wi-Fi TLV Attribute.

>>>
>>>
>>>
>>>
>>>
>>>

import ndef
record = ndef.WifiSimpleConfigRecord()

record[0x1020] = [b'\x00\x01\x02\x03\x04\x05"']
assert record[0x1020] == record['mac-address']
record['mac-address'] .append (b'\x05\x04\x03\x02\x01\x00")

record['mac—address']

[b'"\x00\x01\x02\x03\x04\x05", b'\x05\x04\x03\x02\x01\x00"]

The get_attribute, set_attribute and add_attribute methods can be used to get or set values using
WSC Attribute Classes.

class ndef.WifiSimpleConfigRecord (*args)

The wifiSimpleConfigRecord isinitialized with any number of Wi-Fi Simple Config Attribute Type and
Value tuples. The same Attribute Type may appear more than once.

>>> import ndef
>>> print (ndef.WifiSimpleConfigRecord((0x1001, b'\x00\x06'), ('ap-channel', b
— '"\x00\x06"')))

NDEF Wifi Simple Config Record ID '' Attributes 0x1001 0x1001

type
The read-only Wifi Simple Configuration Record type.

>>> ndef.wifi.WifiSimpleConfigRecord() .type
'application/vnd.wfa.wsc'

name
Value of the NDEF Record ID field, an empty st r if not set.

>>> record = ndef.wifi.WifiSimpleConfigRecord()
>>> record.name = 'WSC Record'

>>> record.name

'WSC Record'

data
A bytes object containing the NDEF Record PAYLOAD encoded from the current attribute data.

>>> record = ndef.wifi.WifiSimpleConfigRecord()
>>> record.data

bt

>>> record['ap-channel'] = [b'\x00\x06"']

>>> record.data

b'\x10\x01\x00\x02\x00\x06"

attribute_names
The read-only 1ist of all WSC Attribute names that can be used as keys on the record instance or as
names for the get/set/add_attribute methods.

34

Chapter 2. Known Record Types

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#list

ndeflib documentation, Release 0.3.3

>>> print ('\n'.Jjoin(sorted(ndef.wifi.WifiSimpleConfigRecord() .attribute_
—names)))

ap—-channel

credential

device-name

mac—-address

manufacturer

model-name

model-number

oob-password
primary-device-type
rf-bands
secondary-device-type-1list
serial-number

ssid

uuid-enrollee
uuid-registrar
vendor—-extension

version-1

get_attribute (name, index=0)
The get_attribute method returns the Wi-Fi Attribute selected by name and index.

>>> record = ndef.WifiSimpleConfigRecord(('ap-channel', b'\x00\x06"'))
>>> print (record.get_attribute ('ap-channel', 0))

AP Channel 6

>>> print (record.get_attribute ('ap-channel', 1))

None

set_attribute (name, *args)
The set_attribute method sets the Wi-Fi Attribute name to a single instance constructed from args.

>>> record = ndef.WifiSimpleConfigRecord(('ap-channel', b'\x00\x06"))
>>> record.set_attribute('ap-channel', 10)

>>> print (record.get_attribute ('ap-channel', 0))

AP Channel 10

>>> print (record.get_attribute ('ap-channel', 1))

None

add_attribute (name, *args)
The add _attribute method adds a Wi-Fi Attribute name constructed from args to any existing
Wi-Fi Attributes of name. If there are no existing attributes for name the result is the same as for
set_attribute.

>>> record = ndef.WifiSimpleConfigRecord(('ap-channel', b'\x00\x06"'))
>>> record.add_attribute ('ap-channel', 12)

>>> print (record.get_attribute ('ap-channel', 0))

AP Channel 6

>>> print (record.get_attribute ('ap-channel', 1))

AP Channel 12

Wi-Fi Peer To Peer Record

class ndef.WifiPeerToPeerRecord (*args)
The wifiPeerToPeerRecord inherits from WifiSimpleConfigRecord and adds handling of Wi-Fi
P2P Attributes.

2.7. Wi-Fi Simple Configuration 35

ndeflib documentation, Release 0.3.3

>>> import ndef

="')))
NDEF Wifi Peer To Peer Record ID '' Attributes 0x13

>>> print (ndef.WifiPeerToPeerRecord(('negotiation—-channel', b'de\x04\x51\x06\x01

type
The read-only Wifi Peer To Peer Record type.

>>> ndef.wifi.WifiPeerToPeerRecord() .type
'application/vnd.wfa.p2p'

attribute_ names

The read-only 11ist of all WSC and P2P Attribute names that may be used as keys on the record instance

or as names for the get/set/add_attribute methods.

ap—-channel
channel-1list
credential
device—-name
mac—address
manufacturer
model-name
model-number
negotiation-channel
oob-password
p2p-capability
p2p-device-info
p2p-group-id
p2p-group-info
primary-device-type
rf-bands
secondary-device-type-1list
serial-number

ssid

uuid-enrollee
uuid-registrar
vendor—-extension
version-1

>>> print ('\n'.Jjoin(sorted(ndef.wifi.WifiPeerToPeerRecord () .attribute_names)))

2.7.3 WSC Attribute Classes

This section documents the Wi-Fi Simple Configuration (WSC) Attribute classes.

AP Channel

The AP Channel Attribute specifies the 802.11 channel that the AP is using.

class ndef.wifi.APChannel (value)
The value argument is the int or decimal integer st r channel number.

>>> import ndef

>>> assert ndef.wifi.APChannel (6) == ndef.wifi.APChannel ("6")
>>> ndef.wifi.APChannel (6) .value
6

36 Chapter 2. Known Record Types

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

ndeflib documentation, Release 0.3.3

value
The read-only AP Channel int value.

Authentication Type

The Authentication Type Attribute contains the authentication type for the Enrollee to use when associating with the
network. For protocol version 2.0 or newer, the value 0x0022 can be used to indicate mixed mode operation (both
WPA-Personal and WPA2-Personal enabled). All other values are required to have only a single bit set to one in this

attribute value.

Value | Authentication Type | Notes

0x0001 | Open

0x0002 | WPA-Personal deprecated in version 2.0
0x0004 | Shared deprecated in version 2.0
0x0008 | WPA-Enterprise deprecated in version 2.0
0x0010 | WPA2-Enterprise includes both CCMP and GCMP
0x0020 | WPA2-Personal includes both CCMP and GCMP

class ndef.wifi.AuthenticationType (*args)

The args arguments may be a single int value with a bitwise OR of values from the authentication type table

or one or more authentication type names. A type name can be used to test if the corresponding bit is set.

>>> import ndef

>>> mixed_mode = ndef.wifi.AuthenticationType ('WPA-Personal',
>>> mixed_mode.value

(34, 'WPA-Personal', 'WPA2-Personal')

>>> "WPA2-Personal" in mixed_mode

True

'WPA2-Personal')

value
A tuple with the authentication type value and corresponding names.

Configuration Methods

The Configuration Methods Attribute lists the configuration methods the Enrollee or Registrar supports.

Value | Configuration Method | Description

0x0001 | USBA Deprecated

0x0002 | Ethernet Deprecated

0x0004 | Label 8 digit static PIN typically available on device.

0x0008 | Display A dynamic 4 or 8 digit PIN is available from a display.™
0x0010 | External NFC Token An NFC Tag transfers the configuration or device password.
0x0020 | Integrated NFC Token The NFC Tag is integrated in the device.

0x0040 | NFC Interface The device contains an NFC interface.

0x0080 | PushButton The device contains a physical or virtual pushbutton.™
0x0100 | Keypad Device is capable of entering a PIN

0x0280 | Virtual Push Button A virtual push button is avilable on a user interface.
0x0480 | Physical Push Button A physical push button is available on the device.
0x2008 | Virtual Display PIN The PIN is displayed through a remote user interface.
0x4008 | Physical Display PIN The PIN is shown on a display that is part of the device.

2.7. Wi-Fi Simple Configuration

37

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

ndeflib documentation, Release 0.3.3

class ndef.wifi.ConfigMethods (*args)
The args arguments may be a single int value with a bitwise OR of values from the configuration method table
or one or more method names. Any of the configuration method names can be tested for containment.

>>> import ndef
>>> config_methods = ndef.wifi.ConfigMethods ("Label", "Display")

>>> assert ndef.wifi.ConfigMethods (0x000C) == config_methods
>>> "Label" in config_methods
True

>>> config_methods.value
(12, 'Label', 'Display')

value
A tuple with the configuration methods value and corresponding names.

Credential

class ndef.wifi.Credential (*args)
Credential is a compound Wi-Fi Attribute. It can be initialized with any number of Wi-Fi Attribute Type and
Value tuples.

>>> import ndef

>>> credential = ndef.wifi.Credential(('ssid', b'my-ssid'), ('network-key', b
—'secret'))

>>> print (credential)

Credential Attributes 0x1027 0x1045

>>> print (credential.get_attribute('ssid'))

SSID 6D:79:2D:73:73:69:64

attribute names
A read-only 11ist of all Wi-Fi Simple Configuration Attribute names that can be used as Credential keys.

>>> print ('\n'.Jjoin(sorted(ndef.wifi.Credential () .attribute_names)))
authentication-type

encryption-type

key-provided-automatically

mac—address

network—-index

network-key

ssid

vendor—-extension

get_attribute (name, index=0)

>>> import ndef

>>> credential = ndef.wifi.Credential (('mac—-address', b'123456"))
>>> print (credential.get_attribute ('mac-address'))

MAC Address 31:32:33:34:35:36

>>> print (credential.get_attribute ('mac-address', 1))

None

set_attribute (name, *args)

10 Version 2.0 devices qualify a display as Virtual Display PIN or Physical Display PIN and a push button as Virtual Push Button or Physical
Push Button.

38 Chapter 2. Known Record Types

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list

ndeflib documentation, Release 0.3.3

>>> import ndef

>>> credential = ndef.wifi.Credential (('mac-address', b'123456"))
>>> credential.set_attribute ('mac-address', b'654321")

>>> print (credential.get_attribute ('mac-address'))

MAC Address 36:35:34:33:32:31

>>> print (credential.get_attribute ('mac-address', 1))

None

add_attribute (name, *args)

>>> import ndef

>>> credential = ndef.wifi.Credential (('mac-address', b'123456"))
>>> credential.add_attribute ('mac-address', b'654321")

>>> print (credential.get_attribute ('mac-address'))

MAC Address 31:32:33:34:35:36

>>> print (credential.get_attribute ('mac-address’', 1))

MAC Address 36:35:34:33:32:31

Device Name

The Device Name Attribute contains a user-friendly description of the device encoded in UTF-8. Typically, this is a
unique identifier that describes the product in a way that is recognizable to the user.

class ndef.wifi.DeviceName (device_name)
The device_name argument is unicode string of up to 32 characters.

value
The device name string.

Encryption Type

The Encryption Type Attribute contains the encryption type for the Enrollee to use when associating with the network.
For protocol version 2.0 or newer, the value 0x000C can be used to indicate mixed mode operation (both WPA-
Personal with TKIP and WPA2-Personal with AES enabled). All other values are required to have only a single bit set
to one in this attribute value.

Value | Encryption Type | Notes
0x0001 | None

0x0002 | WEP Deprecated.
0x0004 | TKIP Deprecated. Use only for mixed mode.
0x0008 | AES Includes both CCMP and GCMP

class ndef.wifi.EncryptionType (*args)
The arguments args may be a single int value with a bitwise OR of values from the encryption type table or
one or more encryption type names. A name can be used to test if that encryption type is included.

>>> import ndef
>>> mixed_mode = ndef.wifi.EncryptionType ('TKIP', 'AES'")

>>> assert ndef.wifi.EncryptionType (0x000C) == mixed_mode
>>> "AES" in mixed_mode
True

>>> mixed_mode.value
(12, 'TKIP', 'AES')

2.7. Wi-Fi Simple Configuration 39

https://docs.python.org/3/library/functions.html#int

ndeflib documentation, Release 0.3.3

value
A tuple with the encryption type value and corresponding names.

Key Provided Automatically
The Key Provided Automatically Attribute specifies whether the Network Key is provided automatically by the net-
work.

class ndef.wifi.KeyProvidedAutomatically (value)
The value argument may be any type that can be converted into bool.

>>> import ndef
>>> ndef.wifi.KeyProvidedAutomatically (1) .value
True

value
Either True or False.

MAC Address

The MAC Address Attribute contains the 48 bit value of the MAC Address.

class ndef.wifi.MacAddress (value)
The value argument may be any type that can be converted to a byt e s object with the six MAC Address octets.

>>> import ndef

>>> mac_address = ndef.wifi.MacAddress (b"\x01\x02\x03\x04\x05\x06")
>>> assert ndef.wifi.MacAddress([1l, 2, 3, 4, 5, 6]) == mac_address
>>> mac_address.value

b'\x01\x02\x03\x04\x05\x06"

value
The six MAC Address bytes.

Manufacturer
The Manufacturer Attribute is an ASCII string that identifies the manufacturer of the device. Generally, this should
allow a user to make an association with the labeling on the device.

class ndef.wifi.Manufacturer (value)
The value argument is a text st r or bytes containing ASCII characters.

>>> import ndef
>>> ndef.wifi.Manufacturer ("Company") .value
'Company’

value
The Manufacturer name string.

Model Name

The Model Name Attribute is an ASCII string that identifies the model of the device. Generally, this field should allow
a user to make an association with the labeling on the device.

40 Chapter 2. Known Record Types

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes

ndeflib documentation, Release 0.3.3

class ndef.wifi.ModelName (value)
The value argument is a text st r or bytes containing ASCII characters.

>>> import ndef
>>> ndef.wifi.ModelName ("Product") .value
'Product’

value
The Model Name string.

Model Number

The Model Number Attribute provides additional description of the device to the user.

class ndef.wifi.ModelNumber (value)
The value argument is a text st r or bytes containing ASCII characters.

>>> import ndef
>>> ndef.wifi.ModelNumber ("007") .value
'007"

value
The Model Number string.

Network Index
The Network Index Attribute is deprecated. Value 1 must be used for backwards compatibility when the attribute is
required.

class ndef.wifi.NetworkIndex (value)
The value argument is the i nt network index number.

>>> import ndef
>>> ndef.wifi.NetworkIndex (1) .value
1

value
The Network Index integer.

Network Key

The Network Key Attribute specifies the wireless encryption key to be used by the Enrollee.

class ndef.wifi.NetworkKey (value)
The value argument may be any type that can be converted to a bytes object with the 0 to 64 network key
octets.

>>> import ndef
>>> ndef.wifi.NetworkKey (b"key") .value
b'key'

value
The Network Key bytes.

2.7. Wi-Fi Simple Configuration 41

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#bytes

ndeflib documentation, Release 0.3.3

Network Key Shareable

The Network Key Shareable Attribute is used within Credential Attributes. It specifies whether the Network Key

included in the Credential can be shared or not with other devices. A True value indicates that the Network Key can
be shared.

class ndef.wifi.NetworkKeyShareable (value)
The value argument may be any type that can be converted into bool.

>>> import ndef
>>> ndef.wifi.NetworkKeyShareable (True) .value
True

value
Either True or False.

Out Of Band Device Password

The Out-of-Band Device Password Attribute contains a fixed data structure with the overall size is given by the Wi-Fi
Attribute TLV Length value.

Field Size | Description

Public Key Hash | 20 First 160 bits of the public key hash.
Password ID 2 16 bit identifier for the device password.
Device Password | 16-32 | Zero or 16-32 octet long device password.

The Password ID of an Out-of-Band Device Password must be between 0x0010 and OxFFFF inclusively and chosen
at random, except when NFC negotiated handover is used in which case the Password ID is set to 0x0007.

The Device Password is (Length — 22) octets long, with a maximum size of 32 octets. A Device Password length of 32
byte is recommended if the out-of-band channel has sufficient capacity. Otherwise, it can be any size with a minimum
length of 16 bytes, except when the Password ID is equal to 0x0007 (NFC negotiated handover) in which case it has
zero length.

For Enrollee provided Device Passwords, the Public Key Hash Data field corresponds to the first 160 bits of a SHA-
256 hash of the Enrollee’s public key exchanged in message M 1. For Registrar provided Device Passwords, the Public
Key Hash Data field corresponds to the first 160 bits of a SHA-256 hash of the Registrar’s public key exchanged in
message M2.

class ndef.wifi.OutOfBandPassword (public_key_hash, password_id, password)
The public_key_hash attribute is a bytes object with the first 20 octets of the SHA-256 hash of the device’s
public key. The password_id argument is a 16-bit unsigned int value. The password is a bytes object with
the either 0 or 16-32 octets long device password.

>>> import ndef

>>> import random

>>> import hashlib

>>> pubkey_hash = hashlib.sha256 (b'my public key goes here') .digest () [0:20]
>>> password_id = random.randint (16, 65535)

>>> my_password = b"my long password you can't guess"

>>> oob = ndef.wifi.OutOfBandPassword (pubkey_hash, password_id, my_password)
>>> assert oob.value == (pubkey_hash, password_id, my_password)

>>> assert oob.public_key_hash == pubkey_hash

>>> assert oob.password_id == password_id

>>> assert oob.device_password == b"my long password you can't guess"

42 Chapter 2. Known Record Types

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#bytes

ndeflib documentation, Release 0.3.3

value

The Out Of Band Password Attribute as the (public_key_hash, password_id, password).

public_key hash
The Public Key Hash bytes.

password_id
The Password ID integer.

device_password
The Device Password bytes.

Primary Device Type

The Primary Device Type Attribute contains the primary type of the device.

"Computer: :PC"

"Computer: :Server"

"Computer: :MediaCenter"
"Computer::UltraMobile"
"Computer: :Notebook"

"Computer: :Desktop"

"Computer: :MobileInternetDevice"
"Computer: :Netbook"
"Computer::Tablet"
"Computer::Ultrabook™"

"Input: :Keyboard"

"Input::Mouse"

"Input::Joystick"
"Input::Trackball"
"Input::GameController"

"Input: :Remote"
"Input::Touchscreen"
"Input::BiometricReader"
"Input::BarcodeReader"
"Printer::Scanner"
"Printer::Fax"

"Printer::Copier"
"Printer::Multifunction"
"Camera::DigitalStillCamera"
"Camera: :VideoCamera"

"Camera: :WebCamera"

"Camera: :SecurityCamera"
"Storage: :NAS"

"Network: :AccessPoint"
"Network::Router"
"Network::Switch"

"Network: :Gateway"

"Network: :Bridge"
"Display::Television"
"Display::PictureFrame"
"Display::Projector"
"Display::Monitor"
"Multimedia::DigitalAudioRecorder"
"Multimedia: :PersonalVideoRecorder"
"Multimedia::MediaCenterExtender"
"Multimedia::SetTopBox"
"Multimedia: :ServerAdapterExtender"

(continues on next page)

2.7. Wi-Fi Simple Configuration

43

ndeflib documentation, Release 0.3.3

(continued from previous page)

"Multimedia::PortableVideoPlayer"

"Gaming:
"Gaming:
"Gaming:
"Gaming:
"Gaming:

: Xbox"
:Xbox360"
:Playstation"
:Console"
:Portable"

"Telephone: :WindowsMobile"
"Telephone: :SingleModePhone"
"Telephone: :DualModePhone"
"Telephone: :SingleModeSmartphone"
"Telephone: :DualModeSmartphone"

"Audio:
"Audio:
"Audio:
"Audio:
"Audio:
"Audio:
"Audio:

:Receiver"

:Speaker"
:PortableMusicPlayer"
:Headset™"

:Headphone"
:Microphone"
:HomeTheater"

"Dock: :Computer"
"Dock: :Media"

class ndef.wifi.PrimaryDeviceType (value)

The value attribute may be either a 64-bit integer equivalent to the Attribute Value bytes in MSB order, or one
of the text values above.

>>>
>>>
>>>
>>>
>>>

import ndef

device_type_1 = ndef.wifi.PrimaryDeviceType (0x00010050F2040001)
device_type_2 = ndef.wifi.PrimaryDeviceType ("Computer::PC")
assert device_type_1 == device_type_2

device_type_1.value

'Computer: :PC'
>>> ndef.wifi.PrimaryDeviceType (0x0001FFFFFF000001) .value
'Computer: :FFFFFF000001"'
>>> ndef.wifi.PrimaryDeviceType (0xABCDFFFFFEF000001) .value
'ABCD: :FFFFFF00000L1"'

value

The Primary Device Type string.

RF Bands

The RF Bands Attribute indicates a specific RF band that is utilized during message exchange. As an optional attribute
in NFC out-of-band provisioning it indicates the RF Band relating to a channel or the RF Bands in which an AP is
operating with a particular SSID.

class ndef.wifi.RFBands (*args)
The arguments args may be a single int value with a bitwise OR of values from the RF bands table or one or
more RF band names. A name can be used to test if that RF band is included.

Value | RF Band
0x01 2.4GHz
0x02 | 5.0GHz
0x03 60GHz

44

Chapter 2. Known Record Types

https://docs.python.org/3/library/functions.html#int

ndeflib documentation, Release 0.3.3

>>> import ndef

>>> assert ndef.wifi.RFBands (0x03) == ndef.wifi.RFBands('2.4GHz', '5.0GHz")
>>> "5 0GHz" in ndef.wifi.RFBands (0x03)
True

>>> ndef.wifi.RFBands (0x03) .value
(3, '2.4GHz', '5.0GHz"'")

value
The tuple of RF Bands integer value and corresponding names.

Secondary Device Type List
The Secondary Device Type List contains one or more secondary device types supported by the device. The standard
values of Category and Sub Category are the same as for the Primary Device Type Attribute.

class ndef.SecondaryDeviceTypelist (*args)
One or more initialization arguments my be supplied as 64-bit integers or device type strings.

>>> import ndef
>>> ndef.wifi.SecondaryDeviceTypeList (0x00010050F2040002, 'Storage::NAS') .value
('"Computer: :Server', 'Storage::NAS')

value
A tuple of all device type strings.

Serial Number

The Serial Number Attribute contains the serial number of the device.

class ndef.wifi.SerialNumber (value)
The value argument is a text st r or bytes containing ASCII characters.

>>> import ndef
>>> ndef.wifi.SerialNumber ("CB5A281NNP") .value
'CB5A281NNP'

value
The Serial Number string.

SSID

The SSID Attribute represents the Service Set Identifier a.k.a network name. This is used by the client to identify the
wireless network to connect with. The SSID Attribute value must match exactly with the value of the SSID, i.e. no
zero padding and same length.

class ndef.wifi.SSID
The value argument may be any type that can be converted to a bytes object with the SSID octets.

>>> import ndef
>>> ndef.wifi.SSID(b"my wireless network") .value
b'my wireless network'

value
The SSID bytes.

2.7. Wi-Fi Simple Configuration 45

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytes

ndeflib documentation, Release 0.3.3

UUID-E

The UUID-E Attribute contains the universally unique identifier (UUID) generated as a GUID by the Enrollee. It
uniquely identifies an operational device and should survive reboots and resets.
class ndef.wifi.UUIDEnrollee (value)

The value argument may be either a uuid.UUID object, or the 16 bytes of a UUID, or any st r value that
can be used to initialize uuid.UUID object.

>>> import ndef
>>> ndef.wifi.UUIDEnrollee (bytes (range (16))) .value
'00010203-0405-0607-0809-0a0b0c0d0e0f"

>>> ndef.wifi.UUIDEnrollee ("00010203-0405-0607-0809-0a0b0c0d0e0£f") .value
'00010203-0405-0607-0809-0a0b0c0d0e0f"’

value
The UUID-E string.

UUID-R

The UUID-R Attribute contains the universally unique identifier (UUID) generated as a GUID by the Registrar. It
uniquely identifies an operational device and should survive reboots and resets.
class ndef.wifi.UUIDRegistrar

The value argument may be either a uuid.UUID object, or the 16 bytes of a UUID, or any st r value that
can be used to initialize uuid.UUID object.

>>> import ndef
>>> ndef.wifi.UUIDRegistrar (bytes(range (16))) .value
'00010203-0405-0607-0809-0a0b0c0d0e0f"

>>> ndef.wifi.UUIDRegistrar('00010203-0405-0607-0809-0a0b0c0d0e0f") .value
'00010203-0405-0607-0809-0a0b0c0d0e0f"’

value
The UUID-E string.

Version

The Version Attribute is deprecated and always set to 0x10 (version 1.0) for backwards compatibility. Version 1.0h of
the specification did not fully describe the version negotiation mechanism and version 2.0 introduced a new subele-
ment (Version2) for indicating the version number to avoid potential interoperability issues with deployed 1.0h-based

devices.
class ndef.wifi.Versionl (*args)

A single argument provides the version number as an 8-bit unsigned int. Two arguments provide the major
and minor version numbers as 4-bi unsigned int.

>>> import ndef

>>> assert ndef.wifi.Versionl (0x10) == ndef.wifi.Versionl(1l, 0)
>>> ndef.wifi.Versionl (1, 0).value

Version (major=1, minor=0)

value
The Version as a namedtuple with major and minor fields.

46 Chapter 2. Known Record Types

https://docs.python.org/3/library/uuid.html#uuid.UUID
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/uuid.html#uuid.UUID
https://docs.python.org/3/library/uuid.html#uuid.UUID
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/uuid.html#uuid.UUID
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/collections.html#collections.namedtuple

ndeflib documentation, Release 0.3.3

Version2

The Version2 Attribute specifies the Wi-Fi Simple Configuration version implemented by the device sending this
attribute. It is a subelement within a Wi-Fi Alliance Vendor Extension that was added in the specification version 2.0.
If the Version2 Attribute is not included in a message it is assumed to use version 1.0.

class ndef.wifi.Version2 (*args)
A single argument provides the version number as an 8-bit unsigned int. Two arguments provide the major
and minor version numbers as 4-bit unsigned int.

>>> import ndef

>>> assert ndef.wifi.Version2 (0x20) == ndef.wifi.Version2(2, 0)
>>> ndef.wifi.Versionl (2, 0).value

Version (major=2, minor=0)

value
The Version2 as a namedtuple with major and minor fields.

Vendor Extension

The Vendor Extension Attribute allows vendor specific extensions in the Wi-Fi Simple Configuration message formats.
The Vendor Extension Value field contains the Vendor ID followed by a maximum of 1021 octets Vendor Data. Vendor
ID is the SMI network management private enterprise code.

class ndef.wifi.VendorExtension (vendor_id, vendor_data)
Both the vendor_id and vendor_data arguments are bytes that initalize the fields to encode. The vendor_id
must be 3 octets while vendor_data may contain from 0 to 1021 octets.

>>> import ndef

>>> vendor_id, vendor_data = (b'\x00\x37\x2A', b'123")

>>> ndef.wifi.VendorExtension (vendor_id, vendor_data) .value == (vendor_id, vendor_
—data)

True

value
The read-only Vendor Extension Attribute as the tuple of (vendor_id, vendor_data).

Wi-Fi Alliance Vendor Extension

The Wi-Fi Alliance (WFA) Vendor Extension is a Vendor Extension attribute (ID 0x1049) that uses Vendor ID
0x00372A and contains one or more subelements. The WFA Vendor Extension attribute is used to encode new infor-
mation in a way that avoids some backwards compatibility issues with deployed implementations that are based on
previous specification versions, but do not comply with requirements to ignore new attributes.

class ndef.wifi.WifiAllianceVendorExtension
The WifiAllianceVendorExtension is an attribute container class that holds other Wi-Fi Simple Con-
figuration attributes. It may be initialzed with any number of WFA sublement type-value tuples.

>>> import ndef

>>> wfa_ext ndef.wifi.WifiAllianceVendorExtension(('version-2"', b'\x20'))
>>> wfa_ext[0x02] = [b'\x01'] # network key shareable

>>> print (wfa_ext)

WFA Vendor Extension Attributes 0x00 0x02

2.7. Wi-Fi Simple Configuration 47

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/collections.html#collections.namedtuple
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#tuple

ndeflib documentation, Release 0.3.3

attribute_ names
The read-only list of all WSC attribute names (subelements) that may be used as a key or name for the
get/set/add_attribute methods.

>>> print ("\n'.Jjoin (sorted(ndef.wifi.WifiAllianceVendorExtension () .attribute_
—names)))

network-key-shareable

version—-2

get_attribute (name, index=0)
The get_attribute method returns the WFA subelement attribute selected by name and index.

>>> wfa_ext = ndef.wifi.WifiAllianceVendorExtension(('version-2', b'\x20"))
>>> wfa_ext.get_attribute('version-2")
ndef.wifi.Version2 (2, 0)

set_attribute (name, *args)
The set_attribute method sets the WFA subelement attribute name to a single instance constructed
from args.

>>> wfa_ext = ndef.wifi.WifiAllianceVendorExtension(('version-2', b'\x20"))
>>> wfa_ext.set_attribute('version-2', 0x21)

>>> wfa_ext.get_attribute('version-2")

ndef.wifi.Version2 (2, 1)

add_attribute (name, *args)
The add_attribute method adds a WFA subelement attribute name constructed from args to any exist-
ing name attributes. If there are no existing name attributes it is effectively the same as set_attribute.

>>> wfa_ext = ndef.wifi.WifiAllianceVendorExtension ()

>>> wfa_ext.add_attribute('version-2', ndef.wifi.Version2 (2, 0))
>>> wfa_ext.add_attribute('version-2', ndef.wifi.Version2 (2, 1))
>>> wfa_ext.get_attribute('version-2', 0)

ndef.wifi.Version2 (2, 0)

>>> wfa_ext.get_attribute('version-2"', 1)

ndef.wifi.Version2 (2, 1)

2.7.4 P2P Attribute Classes

This section documents the Wi-Fi Peer To Peer (P2P) Attribute classes.

P2P Capability

The P2P Capability attribute contains a set of parameters that indicate the P2P Device’s capability and the current state
of the P2P Group.

Device Capability Strings:

'Service Discovery'

'P2P Client Discoverability'
'Concurrent Operation’

'P2P Infastructure Managed'
'P2P Device Limit'

'P2P Invitation Procedure'

(continues on next page)

48 Chapter 2. Known Record Types

ndeflib documentation, Release 0.3.3

(continued from previous page)

'Reserved Bit 6'
'Reserved Bit 7'

Group Capability Strings:

'P2P Group Owner'
'Persistent P2P Group'
'P2P Group Limit'
'Intra-BSS Distribution'
'Cross Connection'
'Persistent Reconnect'
'Group Formation'

'IP Address Allocation'

class ndef.wifi.PeerToPeerCapability (device_capability, group_capability)
Both init arguments device_capability and group_capability may be set as either 8-bit integer values with each
bit position corresponding to an individual capability, or as a list of capability strings.

>>> import ndef
>>> attr_1 = ndef.wifi.PeerToPeerCapability (0b00000001, 0b01000000)

>>> attr_2 = ndef.wifi.PeerToPeerCapability (['Service Discovery'], ['Group,
—~Formation'])
>>> assert attr_1 == attr_2

>>> ndef.wifi.PeerToPeerCapability (3, 65).device_capability
(3, 'Service Discovery', 'P2P Client Discoverability')

device_capability
The P2P Device Capabilities as a tuple with the first element the numerical value of the device capability
bitmap and following elements are capability strings. This attribute is read-only.

>>> import ndef
>>> ndef.wifi.PeerToPeerCapability (3, 0).device_capability
(3, 'Service Discovery', 'P2P Client Discoverability')

group_capability
The P2P Group Capabilities as a tuple with the first element the numerical value of the group capability
bitmap and following elements are capability strings. This attribute is read-only.

>>> import ndef
>>> ndef.wifi.PeerToPeerCapability (0, 65).group_capability
(65, 'P2P Group Owner', 'Group Formation')

Channel List

The Channel List attribute contains a list of Operating Class and Channel pair information.

class ndef.wifi.Channellist (country_string, *channel_entry)
The country_string argument determines the country code for the channel_entry argument(s). Each chan-
nel_entry is a tuple of an operating_class integer and a channel_numbers list.

>>> import ndef

>>> channel_list = ndef.wifi.ChannellList (b"de\x04", (81, (1, 6)), (115, (36, 44)))
>>> print (channel_list)

Channel List Country DE Table E-4 Class 81 Channels [1, 6], Class 115 Channels
—[36, 44]

(continues on next page)

2.7. Wi-Fi Simple Configuration 49

ndeflib documentation, Release 0.3.3

(continued from previous page)

>>> len(channel_1list)

2

>>> print (channel_list[0])
Class 81 Channels [1, 6]
>>> channel_1list[0] .operating_class

81

>>> channel_1list[0].channel_numbers

(1,

6)

country_ string

The Country String field is the value contained in the dotl 1CountryString attribute, specifying the country
code in which the Channel Entry List is valid. The third octet of the Country String field is always set to
hex 04 to indicate that Table E-4 is used.

>>> import ndef
>>> ndef.wifi.ChannellList (b"de\x04", (81, (1,))).country_string
b'de\x04"'

P2P Device Info

The P2P Device Info attribute provides the P2P Device Address, Config Methods, Primary Device Type, a list of
Secondary Device Types and the user friendly Device Name.

class ndef.wifi.PeerToPeerDeviceInfo (adr, cfg, pdt, sdtl, name)

The first argument adr must be the 6 bytes P2P Device Address. The cfg argument is a tuple of Configuration
Methods strings. The pdt argument specifies the Primary Device Type of the P2P Device as a single text string.
The Secondary Device Type List sdtl argument expects a tuple of device type strings. The Device Name name
argument provides the friendly name of the P2P Device. All arguments must be supplied.

>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
P2P

import ndef

adr = b'\x01\x02\x03\x04\x05\x06"'

cfg = ('Label', 'Display')

pdt = 'Computer::Tablet'

sdtl = ('Computer::PC',)

name = 'my tablet'

info = ndef.wifi.PeerToPeerDevicelInfo(adr, cfg, pdt, sdtl, name)

print (info)
Device Info 01:02:03:04:05:06 0x000C ['Label', 'Display'] Computer::Tablet,,

—Computer::PC 'my tablet'

device_ address

The P2P Device Identifier used to uniquely reference a P2P Device returned as a 6 byte string. The
device_address attribute is read-only.

>>> info.device_address
b'\x01\x02\x03\x04\x05\x06"

config methods

The Configuration Methods that are supported by this device e.g. PIN from a Keypad, PBC etc. The values
are returned as a tuple where the first entry is the config methods bitmap and remaining entries are method
strings. The config _methods attribute is read-only.

>>> info.config_methods
(12, 'Label', 'Display')

50

Chapter 2. Known Record Types

ndeflib documentation, Release 0.3.3

primary_device_type
The Primary Device Type of the P2P Device returned as a string. See Primary Device Type for representa-
tion of pre-defined and custom values. The primary device_type attribute is read-only.

>>> info.primary_device_type
'Computer::Tablet'

secondary_device_type_ list
A list of Secondary Device Types of the P2P Client. Returns a, potentially empty, tuple of device type
strings. The secondary_device type_ 1ist attribute is read-only.

>>> info.secondary_device_type_list
('Computer::PC',)

device_name
The friendly name of the P2P Device which should be the same as the WSC Device Name. The
device_name attribute is read-only.

>>> info.device_name
'my tablet'

P2P Group Info

The P2P Group Info attribute contains device information of P2P Clients that are members of the P2P Group.

class ndef.wifi.PeerToPeerGroupInfo (*client_info)
A PeerToPeerGroupInfo object holds a number of client info descriptors. It is initialized with a number
of client info data tuples as shown below.

>>> import ndef

>>> client_info_1 = (
b'\x01\x02\x03\x04\x05\x06"',
b'\x11\x12\x13\x14\x15\x16"',
('Service Discovery',),
('NFC Interface',),
"Computer::Tablet",
0

'first device',

P2P Device Address

P2P Interface Address
Device Capabilities
Configuration Methods
Primary Device Type
Secondary Device Types

HOHE Y ¥ W W W

Device name
)

>>> client_info_2 = (
b'\x21\x22\x23\x24\x25\x26"',
b'\x31\x32\x33\x34\x35\x36"',
('Service Discovery',),
('"NFC Interface',),
"Computer::Tablet",
(),

'second device',

P2P Device Address

P2P Interface Address
Device Capabilities
Configuration Methods
Primary Device Type
Secondary Device Types

HO¥E Y ¥ Y W W

Device name

)
>>> group_info = ndef.wifi.PeerToPeerGroupInfo(client_info_1, client_info_2)
>>> print (group_info)
P2P Group Info (Device 1: 01:02:03:04:05:06 11:12:13:14:15:16 Capability [
—'Service Discovery'] Config 0x0040 ['NFC Interface'] Type 'Computer::Tablet '
—Name 'first device'), (Device 2: 21:22:23:24:25:26 31:32:33:34:35:36 Capability,,
—['Service Discovery'] Config 0x0040 ['NFC Interface'] Type 'Computer::Tablet '
—Name 'second device')
>>> [client_info.device_name for client_info in group_info]

(continues on next page)

2.7. Wi-Fi Simple Configuration 51

ndeflib documentation, Release 0.3.3

(continued from previous page)

["first device', 'second device']
>>> type (group_info[0])
<class 'ndef.wifi.PeerToPeerGroupInfo.Descriptor'>

class Descriptor

P2P Client Info within a PeerToPeerGroupInfo is exposed as a Descriptor instance with at-
tributes for the relevant information fields.

>>> descriptor = group_info[0]

device_address

The 6 byte P2P Device Identifier used to uniquely reference a P2P Device. The device_address
attribute is read-only.

>>> descriptor.device_address
b'\x01\x02\x03\x04\x05\x06"

interface_address

The 6 byte P2P Interface Address is used to identify a P2P Device within a P2P Group. The
interface_address attribute is read-only.

>>> descriptor.interface_address
b'\x11\x12\x13\x14\x15\x16"

config methods
The Configuration Methods that are supported by this device e.g. PIN from a Keypad, PBC etc. The
values are returned as a tuple where the first entry is the config methods bitmap and remaining entries
are method strings. The config _methods attribute is read-only.

>>> descriptor.config_methods
(64, 'NFC Interface')

primary_device_type
The Primary Device Type of the P2P Device returned as a string. See Primary Device Type for
representation of pre-defined and custom values. The primary device_type attribute is read-
only.

>>> descriptor.primary_device_type
'Computer: :Tablet'

secondary_device_type_ list
A list of Secondary Device Types of the P2P Client. Returns a, potentially empty, tuple of device type
strings. The secondary_device_ type_1ist attribute is read-only.

>>> descriptor.secondary_device_type_list

0

device_name
The friendly name of the P2P Device which should be the same as the WSC Device Name. The
device_name attribute is read-only.

>>> descriptor.device_name
'first device'

52

Chapter 2. Known Record Types

ndeflib documentation, Release 0.3.3

P2P Group ID

The P2P Group ID attribute contains a unique P2P Group identifier of the P2P Group.

class ndef.wifi.PeerToPeerGrouplD (device_ address, ssid)
Both the device_address and ssid arguments must be given as byte strings and the device_address must be
exactly 6 byte long.

>>> import ndef

>>> attr = ndef.wifi.PeerToPeerGroupID (b'\1\2\3\4\5\6', b'P2P Group SSID'")
>>> print (attr)

P2P Group ID 01:02:03:04:05:06 SSID 50:32:50:20:47:72:6F:75:70:20:53:53:49:44

device_address
The 6 byte P2P Device Identifier used to uniquely reference a P2P Device. The device address
attribute is read-only.

>>> attr.device_address
b'\x01\x02\x03\x04\x05\x06"

ssid
The service set identifier (a.k.a. network name) as a byte string. Although often printable it is in fact just
a sequence of bytes with no implied text encoding. The ssid attribute is read-only.

>>> attr.ssid
b'P2P Group SSID'

Negotiation Channel

The Out-of-Band Group Owner Negotiation Channel attribute contains the Channel and Class information used for
the Group Owner Negotiation.

class ndef.wifi.NegotiationChannel (country_string, operating_class, channel_number,

role_indication)
The country_string argument specifies the country code and operating class table (always value 0x04) in 3 bytes.

The operating_class and channel_number must be 8-bit integer values. The role_indication argument must be
either 'Not Member', 'Group Client',or 'Group Owner'.

>>> import ndef

>>> attr = ndef.wifi.NegotiationChannel (b'de\x04', 81, 6, 'Group Client")

>>> print (attr)

Negotiation Channel Country DE Table E-4 Class 81 Channel 6 Role 'Group Client'

country_string
The Country String specifies the country code in which the Group Formation Class and Channel Number
fields are valid. The third octet of the Country String is set to hex 04 to indicate that Table E-4 is used. The
country_string attribute is read-only.

>>> attr.country_string
b'de\x04"'

operating_class
Provides the preferred Operating Class for the Group Owner Negotiation. An Operating Class value O in-
dicates that no preferred Operating Class is available. If set to 0, the Operating Class information provided
in the Channel List attribute shall be used.

2.7. Wi-Fi Simple Configuration 53

ndeflib documentation, Release 0.3.3

81

>>> attr.operating_class

channel_number
Provides the preferred channel for the Group Formation. A Channel Number value O indicates that no
group formation preferred channel is available and P2P Group Owner negotiation with a full channel
search based on the information provided in the Channel List attribute shall be used.

6

>>> attr.channel_number

role_indication
Indicates the current role of the P2P device. It reads as a 2-tuple where the first value is the numerical and
the second value the textual representation. The role indication attribute is read-only.

>>> attr.role_indication
(1, 'Group Client')

2.8 Signature Record

The NDEF Signature Record is a well-known record type defined by the NFC Forum. It contains three fields: a version
field, a signature field and a certificate field.

The version field is static. Currently this implementation only supports v2.0 of the NDEF Signature Record.

The signature field contains the signature type, the message hash type and either the signature itself or a URI to the

signature.

The certificate field contains the certificate format type, a certificate chain store and an option URI to the next certificate

in the chain.

class ndef.SignatureRecord (signature_type=None, hash_type="SHA-256’, signature=b", signa-

ture_uri=", certificate_format="X.509’, certificate_store=[], certifi-
cate_uri="")

The SignatureRecord class decodes or encodes an NDEF Signature Record.

Parameters

type

signature_type (str) — initial value for the signature_ type attribute, default
None

hash_type (str) —initial value for the hash_type attribute, default ‘SHA-256’
signature (bytes) - initial value for the signature attribute, default b’
signature_uri (str) —initial value for the signature_uri attribute, default

certificate_format (str) — initial value for the certificate format at-
tribute, default ‘X.509’

certificate_store (1ist)—initial value for the certificate_ store attribute,
default []

certificate_uri (str) - initial value for the certificate uri attribute, default

3

The Signature Record type is urn:nfc:wkt:Sig.

54

Chapter 2. Known Record Types

http://nfc-forum.org/
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str

ndeflib documentation, Release 0.3.3

name
Value of the NDEF Record ID field, an empty st r if not set.

data
A bytes object containing the NDEF Record PAYLOAD encoded from the current attributes.

version
The version of the NDEF Signature Record.

signature_type
The signature type used in the signature algorithm.

>>> import ndef

>>> print ("\n'.Jjoin([str(x[1]) for x in ndef.signature.SignatureRecord() ._
—mapping_signature_type]))
None

RSASSA-PSS-1024
RSASSA-PKCS1-v1_5-1024
DSA-1024

ECDSA-P192
RSASSA-PSS—-2048
RSASSA-PKCS1-v1_5-2048
DSA-2048

ECDSA-P224

ECDSA-K233

ECDSA-B233

ECDSA-P256

hash_type
The hash type used in the signature algorithm.

>>> import ndef

>>> print ("\n".Jjoin([str(x[1]) for x in ndef.signature.SignatureRecord ()
—mapping_hash_typel]))

SHA-256

signature
The signature (if not specified by signature_uri).

signature_uri
The uniform resource identifier for the signature (if not specified by signature).

certificate_format
The format of the certificates in the chain.

>>> import ndef

>>> print ("\n".Jjoin([str(x[1]) for x in ndef.signature.SignatureRecord() ._
—mapping_certificate_format]))

X.509

M2M

certificate_store
A list of certificates in the certificate chain.

certificate_uri
The uniform resource identifier for the next certificate in the certificate chain.

This is default usage:

2.8.

Signature Record 55

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes

ndeflib documentation, Release 0.3.3

>>> import ndef
>>> signature_record = ndef.SignatureRecord (None, 'SHA-256', b'', '', 'X.509', [1,

. ll)

This is a full example creating records, signing them and verifying them:

>>> import ndef

>>> import io

>>> from cryptography.hazmat.backends import default_backend
>>> from cryptography.hazmat.primitives import hashes

>>> from cryptography.hazmat.primitives.asymmetric import ec
>>> from cryptography.hazmat.primitives.asymmetric import utils
>>> from cryptography.exceptions import InvalidSignature

>>> from asnlcrypto.algos import DSASignature

>>> private_key = ec.generate_private_key (ec.SECP256K1 (), default_backend())
>>> public_key = private_key.public_key ()

>>> rl = ndef.UriRecord("https://example.com")
>>> r2 = ndef.TextRecord("TEST")

>>> stream = io0.BytesIO()

>>> records = [rl, r2, ndef.SignatureRecord("ECDSA-P256", "SHA-256")]

>>> encoder = ndef.message_encoder (records, stream)

>>> for _ in range(len(records) - 1): e=next (encoder)

>>> signature = private_key.sign(stream.getvalue (), ec.ECDSA (hashes.SHA256()))

>>> records[-1].signature = DSASignature.load(signature, strict=True).to_pl363()
>>> e=next (encoder)
>>> octets = stream.getvalue ()

>>> records_verified = []
>>> records_to_verify = []
>>> known_types = {'urn:nfc:wkt:Sig': ndef.signature.SignatureRecord}
>>> for record in ndef.message_decoder (octets, known_types=known_types) :
if not record.type == 'urn:nfc:wkt:Sig':
records_to_verify.append (record)
else:
stream_to_verify = io0.BytesIO()
. encoder_to_verify = ndef.message_encoder (records_to_verify + [record],
— stream_to_verify)
for _ in range(len(records_to_verify)): e=next (encoder_to_verify)
try:
. public_key.verify (DSASignature.from_pl363 (record.signature) .
—dump (), stream_to_verify.getvalue (), ec.ECDSA (hashes.SHA256()))
records_verified.extend (records_to_verify)
records_to_verify = []
except InvalidSignature:
pass

>>> records_verified = list (ndef.message_decoder(b''.join(ndef.message_
—encoder (records_verified))))

56 Chapter 2. Known Record Types

CHAPTER 3

Adding Private Records

Private (or experimental) NDEF Record decoding and encoding can be easily made recognized by the
message_decoder () and message_encoder (). It just requires a record class that inherits from ndef.
record.GlobalRecord and provides the desired record type value as well as the payload decode and encode
methods. The following sections document the decode/encode interface by way of example, with increasing complex-

ity.

3.1 Record with no Payload

This is the most simple yet fully functional record class. It inherits from the abstract class ndef.record.
GlobalRecord (which is actually just an abstract version of Record to make sure the dervied class imple-
ments the payload decode and encode methods. The record type string is set via the _type class attribute.
The _encode_payload method must return the bytes for the NDEF Record PAYLOAD field, usually en-
coded from other record attributes but here it’s just empty. The _decode_payload classmethod receives the
NDEF Record PAYLOAD field the bytes type octets and returns a record object populated with the decoded
PAYLOAD data, again nothing for the record with no payload. The _decode_min_payload_length and
_decode_max_payload_length class attributes (put at the end of the class definition only to align with the
explanation) inform the record decoder about the minmum required and maximum acceptable PAYLOAD size, thus
the octets argument will never have less or more data. If a class does not set those values, the default min value is 0
and the default max value is Record.MAX PAYLOAD SIZE.

import ndef

class ExampleRecordWithNoPayload (ndef.record.GlobalRecord) :
"""An NDEF Record with no payload."""

_type = 'urn:nfc:ext:nfcpy.org:x-empty'
def _encode_payload(self):

This record does not have any payload to encode.
return b''

(continues on next page)

57

https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytes

ndeflib documentation, Release 0.3.3

(continued from previous page)

@classmethod

def _decode_payload(cls, octets, errors):
This record does not have any payload to decode.
return cls ()

|
o

_decode_min_payload_length =
_decode_max_payload_length

Il
o

ndef.Record.register_type (ExampleRecordWithNoPayload)

record = ExampleRecordWithNoPayload ()
octets = b''.join(ndef.message_encoder ([record]))
print ("encoded: {}".format (octets))

message = list (ndef.message_decoder (octets))
print ("decoded: {}".format (message[0]))

encoded: b'\xd4\x11\x00nfcpy.org:x—empty'
decoded: NDEF Example Record With No Payload ID '' PAYLOAD 0 byte

3.2 Example Temperature Record

This record carries an unsigned 32-bit integer timestamp that is the seconds since 1.1.1970 (and will overflow on
February 7, 2106 !) and a signed 16-bit integer with a temperature. The payload is thus a fixed structure with exactly
6 octets for which the inherited _decode_struct and _encode_struct methods are perfectly suited. They are
quite the same as using st ruct . unpack_fromand st ruct .pack but return a single value directly and not as a
(value,) tuple.

This example also shows how the __format___ method is used to provide an arguments and a data view for the
str () and repr () functions.

import ndef
import time

class ExampleTemperatureRecord (ndef.record.GlobalRecord) :
"""An NDEF Record that carries a temperature and a timestamp.

mown

_type = 'urn:nfc:ext:nfcpy.org:x—temp'
def _ _init__ (self, timestamp, temperature):
self._time = timestamp

self._temp = temperature

def _ format__ (self, format_spec):
if format_spec == 'args':
Return the init args for repr() but w/o class name and brackets
return "{r._time}, {r._temp}".format (r=self)

if format_spec == 'data':
Return a nicely formatted content string for str()
data_str = time.strftime (' .%m.%Y'", time.gmtime (self._time))

time_str = time.strftime ('$H:%M:%S', time.gmtime (self._time))
return "{}°C on {} at {}".format (self._temp, data_str, time_str)
return super (ExampleTemperatureRecord, self).__ format__ (format_spec)

(continues on next page)

58 Chapter 3. Adding Private Records

https://docs.python.org/3/library/struct.html#struct.unpack_from
https://docs.python.org/3/library/struct.html#struct.pack
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#repr

ndeflib documentation, Release 0.3.3

(continued from previous page)

def _encode_payload(self):

return self._encode_struct ('>Lh', self._time, self._temp)
@classmethod
def _decode_payload(cls, octets, errors):

timestamp, temperature = cls._decode_struct ('>Lh', octets)

return cls (timestamp, temperature)
Make sure that _decode_payload gets only called with 6 octets
_decode_min_payload_length = 6
_decode_max_payload_length = 6

ndef.Record.register_type (ExampleTemperatureRecord)

record = ExampleTemperatureRecord (1468410873, 25)

octets = b''.Jjoin(ndef.message_encoder ([record]))
print ("encoded: {}".format (octets))

message = list (ndef.message_decoder (octets))
print ("decoded: {}".format (message[0]))

encoded: b'\xd4\x10\x06nfcpy.org:x—tempW\x86+\xf9\x00\x19"
decoded: NDEF Example Temperature Record ID '' 25°C on 13.07.2016 at 11:54:33

3.3 Type Length Value Record

This record class demonstrates how _decode_struct and _encode_struct can be used for typical Type-
Length-Value constructs. The notion ‘BB+’ is a slight extension of the st ruct module’s format string syntax and
means to decode or encode a 1 byte Type field, a 1 byte Length field and Length number of octets as Value. The
_decode_struct method then returns just the Type and Value. The _encode_struct needs only the Type and
Value arguments and takes the Length from Value. Another format string syntax extension, but not not used in the
example, is a trailing ‘*’ character. That just means that all remaining octets are returned as bytes.

This example also demonstrates how decode and encode error exceptions are generated with the _decode_error
and _encode_error methods. These methods return an instance of ndef.DecodeError and ndef.
EncodeError with the fully qualified class name followed by the expanded format string. Two similar methods,
_type_error and _value_error may be used whenever a TypeError or ValueError shall be reported
with the full classname in its error string. They do also check if the first word in the format string matches a data
attribute name, and if, the string is joined with a *.’ to the classname.

The _decode_payload method also shows the use of the errors argument. With ‘strict’ interpretation of errors
the payload is expected to have the Type 1 TLV encoded in first place (although not a recommended design for TLV
loops). The errors argument may also say ‘relax’ and then the order won’t matter.

import ndef

class ExampleTypeLengthValueRecord (ndef.record.GlobalRecord) :
"""An NDEF Record with carries a temperature and a timestamp."""

_type = 'urn:nfc:ext:nfcpy.org:x-tlvs'

def _ _init__ (self, =xargs):
We expect each argument to be a tuple of (Type, Value) where Type

(continues on next page)

3.3. Type Length Value Record 59

https://docs.python.org/3/library/struct.html#module-struct
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/exceptions.html#ValueError

ndeflib documentation, Release 0.3.3

(continued from previous page)

1is int and Value is bytes. So #args+ will be a tuple of tuples.
self._tlvs = args

def _encode_payload(self):
if sum([t for t, v in self._tlvs if t == 1]) != 1:
raise self._encode_error ("exactly one Type 1 TLV is required")
tlv_octets = []
for t, v in self._tlvs:
tlv_octets.append(self._encode_struct ('>BB+', t, v))

return b''.Jjoin(tlv_octets)
@classmethod
def _decode_payload(cls, octets, errors):
tlvs = []
offset = 0

while offset < len(octets):
t, v = cls._decode_struct ('>BB+', octets, offset)
offset = offset + 2 + len(v)
tlvs.append((t, v))

if sum([t for t, v in tlvs if t == 1]) != 1:
raise cls._encode_error ("missing the mandatory Type 1 TLV")
if errors == 'strict' and len(tlvs) > 0 and tlvs[O0][0] != 1:
errstr = 'first TLV must be Type 1, not Type {}'

raise cls._encode_error (errstr, tlvs[0][0])
return cls (*xtlvs)

We need at least the 2 octets Type, Length for the first TLV.
_decode_min_payload_length = 2

ndef.Record.register_type (ExampleTypelengthValueRecord)
record = ExampleTypelengthValueRecord((l, b'abc'), (5, b'xyz'"))
octets = b''.join(ndef.message_encoder ([record]))

print ("encoded: {}".format (octets))

message = list (ndef.message_decoder (octets))
print ("decoded: {}".format (message[0]))

encoded: b'\xd4\x1l0\nnfcpy.org:x-tlvs\x01\x03abc\x05\x03xyz"
decoded: NDEF Example Type Length Value Record ID '' PAYLOAD 10 byte
—'0103616263050378797a"

60 Chapter 3. Adding Private Records

CHAPTER 4

Contributing

Thank you for considering contributing to ndeflib. There are many ways to help and any help is welcome.

4.1 Reporting issues

¢ Under which versions of Python does this happen? This is especially important if your issue is encoding related.

* Under which version of ndeflib does this happen? Check if this issue is fixed in the repository.

4.2 Submitting patches

¢ Include tests if your patch is supposed to solve a bug, and explain clearly under which circumstances the bug
happens. Make sure the test fails without your patch.

* Include or update tests and documentation if your patch is supposed to add a new feature. Note that documenta-
tion is in two places, the code itself for rendering help pages and in the docs folder for the online documentation.

Follow PEP 8 and PEP 257.

4.3 Development tips

 Fork the repository and clone it locally:

git clone git@github.com:your-username/ndeflib.git
cd ndeflib

* Create virtual environments for Python 2 an Python 3, setup the ndeftool package in develop mode, and install
required development packages:

61

https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0257/
http://guides.github.com/activities/forking/

ndeflib documentation, Release 0.3.3

virtualenv python-2

python3 -m venv python-3

source python-2/bin/activate

python setup.py develop

pip install -r requirements-dev.txt
source python-3/bin/activate

python setup.py develop

pip install -r requirements-dev.txt

* Verify that all tests pass and the documentation is build:

tox

¢ Preferably develop in the Python 3 virtual environment. Running t ox ensures tests are run with both the Python
2 and Python 3 interpreter but it takes some time to complete. Alternatively switch back and forth between
versions and just run the tests:

source python-2/bin/activate
py.test
source python-3/bin/activate
py.test

Test coverage should be close to 100 percent. A great help is the HTML output produced by coverage.py:

py.test ——cov ndef —--cov-report html
firefox htmlcov/index.html

The documentation can be created and viewed loacally:

(cd docs && make html)
firefox docs/_build/html/index.html

62 Chapter 4. Contributing

CHAPTER B

License

The ndeflib is licensed under the Internet Systems Consortium ISC license. This is a permissive free software license
functionally equivalent to the simplified BSD and the MIT license.

5.1 License text

ISC License
Copyright (c) 2016, Stephen Tiedemann <stephen.tiedemann @ gmail.com>

Permission to use, copy, modify, and/or distribute this software for any purpose with or without fee is hereby granted,
provided that the above copyright notice and this permission notice appear in all copies.

THE SOFTWARE IS PROVIDED “AS IS” AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH RE-
GARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FIT-
NESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CON-
SEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA
OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

63

mailto:stephen.tiedemann@gmail.com

ndeflib documentation, Release 0.3.3

64

Chapter 5. License

Python Module Index

ndef, 29

65

ndeflib documentation, Release 0.3.3

66

Python Module Index

Index

A tribute), 34
action (ndef.SmartposterRecord attribute), 9 B
add_attribute () (ndef.ndef.wifi. Credential
method), 39 BluetoothEasyPairingRecord (class in ndef), 18
add_attribute () (ndef-ndef.wifi.WifiAllianceVendorExhsiei oothLowEnergyRecord (class in ndef), 21
method), 48
add_attribute () (ndef.WifiSimpleConfigRecord C
method), 35 carrier_data (ndef.HandoverCarrierRecord at-
add_icon () (ndef.SmartposterRecord method), 9 tribute), 16
add_service_class () carrier_type (ndef-HandoverCarrierRecord at-
(ndef.BluetoothEasyPairingRecord method), 20 tribute), 16
add_undefined_data_element () certificate_format (ndef.SignatureRecord at-
(ndef.DevicelnformationRecord method), tribute), 55
11 certificate_store (ndef.SignatureRecord at-
addr (ndef.ndef.bluetooth. DeviceAddress attribute), 26 tribute), 55
alternative_carriers certificate_uri (ndef.SignatureRecord attribute),
(ndef.HandoverlInitiateRecord attribute), 55
15 channel_number (ndef-ndef.wifi.NegotiationChannel
alternative_carriers attribute), 54
(ndef.HandoverMediationRecord attribute), 14 collision_resolution_number
alternative_carriers (ndef.HandoverRequestRecord attribute),
(ndef.HandoverRequestRecord attribute), 12
12 config_methods (ndef.ndef.wifi. PeerToPeerDevicelnfo
alternative_carriers attribute), 50
(ndef.HandoverSelectRecord attribute), 13 config_methods (ndefndef.wifi.PeerToPeerGroupInfo.Descriptor
appearance (ndef.BluetoothLowEnergyRecord at- attribute), 52
tribute), 22 country_string (ndefndef.wifi.ChannelList at-
appearance_strings tribute), 50
(ndef-BluetoothLowEnergyRecord attribute), country_string (ndefndef wifi.NegotiationChannel
23 attribute), 53

attribute_names (ndef.ndef-bluetooth.BluetoothRecord
attribute), 18

attribute names (ndefndefwifi.Credential — at- 4t (ndef DevicelnformationRecord attribute), 10

tribute), 38 data (ndef.-HandoverCarrierRecord attribute), 16
attribute_names (ndef.ndef-wifi. WifiAllianceVendorEXig8%igi ndef HandoverInitiateRecord attribute), 15

attribute), 47 data (ndef.-HandoverMediationRecord attribute), 14
attribute names (ndef WifiPeerToPeerRecord at- gt 5 (ndef HandoverRequestRecord attribute), 12

tribute), 36 data (ndef.-HandoverSelectRecord attribute), 13

attribute_names (ndef WifiSimpleConfigRecord at- 45+ 5 (ndef.Record attribute), 6

67

ndeflib documentation, Release 0.3.3

data (ndef.SignatureRecord attribute), 55

data (ndef.SmartposterRecord attribute), 9
data (ndef.TextRecord attribute), 7

data (ndef.UriRecord attribute), 8

data (ndef.WifiSimpleConfigRecord attribute), 34

decode () (ndef.ndef.bluetooth.DeviceAddress static
method), 25

decode () (ndef.ndef.bluetooth.DeviceClass static
method), 26

decode () (ndef.ndef.bluetooth.ServiceClass static
method), 27

device_address (ndef.BluetoothEasyPairingRecord
attribute), 19

device_address
attribute), 22

device_address (ndef.ndef.wifi.PeerToPeerDevicelnfo
attribute), 50

device_address (ndef.ndef-wifi.PeerToPeerGrouplD
attribute), 53

(ndef.BluetoothLowEnergyRecord

get_attribute ()
method), 38

get_attribute ()
method), 35

get_uuid_names () (ndef-ndef.bluetooth.ServiceClass
static method), 27

group_capability (ndef.ndef-wifi. PeerToPeerCapability
attribute), 49

(ndef.ndef.wifi. Credential

(ndef.WifiSimpleConfigRecord

Fl

HandoverCarrierRecord (class in ndef), 15
HandoverInitiateRecord (class in ndef), 14
HandoverMediationRecord (class in ndef), 13
HandoverRequestRecord (class in ndef), 11
HandoverSelectRecord (class in ndef), 12
hash_type (ndef.SignatureRecord attribute), 55
hexversion (ndef.HandoverlnitiateRecord attribute),
15
hexversion

(ndef.HandoverMediationRecord at-

device_address (ndefndef.wifi.PeerToPeerGrouplnfo. Descriptor tribyte), 14

attribute), 52

device_capability
(ndef.ndef.wifi. PeerToPeerCapability attribute),
49

device_class (ndef.BluetoothEasyPairingRecord at-
tribute), 19

device_name (ndef.BluetoothEasyPairingRecord at-
tribute), 19

device_name (ndef.BluetoothLowEnergyRecord at-
tribute), 22

device_name (ndef.ndef.wifi. PeerToPeerDevicelnfo at-
tribute), 51

hexversion (ndef.HandoverRequestRecord attribute),
12

hexversion (ndef.HandoverSelectRecord attribute),
13

icon (ndef.SmartposterRecord attribute), 9
icons (ndef.SmartposterRecord attribute), 9
interface_address
(ndef.ndef.-wifi. PeerToPeerGrouplInfo.Descriptor
attribute), 52
iri (ndef.UriRecord attribute), 8

device_name (ndef.ndef.wifi.PeerToPeerGroupInfo.Descriptor

attribute), 52

device_password (ndef.ndef.wifi. OutOfBandPassword

attribute), 43
DeviceInformationRecord (class in ndef), 10

E

encode () (ndef.ndef.bluetooth.DeviceAddress method),
25

encode ()
26

encode ()
27

encoding (ndef.TextRecord attribute), 7

error (ndef.HandoverSelectRecord attribute), 13

F

flags (ndef.BluetoothLowEnergyRecord attribute), 24

G

(ndef.ndef.bluetooth.DeviceClass method),

(ndef.ndef.bluetooth.ServiceClass method),

language (ndef.TextRecord attribute), 7

M

major_device_class
(ndef.ndef.bluetooth.DeviceClass attribute), 26
major_service_class
(ndef.ndef.bluetooth.DeviceClass attribute), 27
MAX_PAYLOAD_SIZE (ndef.Record attribute), 6
message_decoder () (in module ndef), 3
message_encoder () (in module ndef), 4
minor_device_class
(ndef.ndef.bluetooth.DeviceClass attribute), 26
model_name (ndef.DevicelnformationRecord at-
tribute), 10

N

name (ndef.BluetoothEasyPairingRecord attribute), 19
name (ndef.BluetoothLowEnergyRecord attribute), 21

get_attribute (ndefndefwifi. Wifi AllianceVendorExten%lg%e (ndef.DevicelnformationRecord attribute), 10

attribute), 48

68

Index

ndeflib documentation, Release 0.3.3

name (ndef.HandoverCarrierRecord attribute), 15

name (ndef.HandoverlnitiateRecord attribute), 15

name (ndef.HandoverMediationRecord attribute), 14

name (ndef.-HandoverRequestRecord attribute), 12

name (ndef.HandoverSelectRecord attribute), 13

name (ndef.ndef.bluetooth.ServiceClass attribute), 277

name (ndef.Record attribute), 5

name (ndef.SignatureRecord attribute), 54

name (ndef.SmartposterRecord attribute), 9

name (ndef. TextRecord attribute), 7

name (ndef.UriRecord attribute), 8

name (ndef. WifiSimple ConfigRecord attribute), 34

ndef (module), 1, 6-8, 10, 11, 16, 29, 54, 56, 60, 62

ndef.bluetooth.BluetoothRecord (class in
ndef), 17

ndef.bluetooth.DeviceAddress (class in ndef),
25

ndef.bluetooth.DeviceClass (class in ndef), 26

ndef.bluetooth.ServiceClass (class in ndef),
27

ndef.wifi.APChannel (class in ndef), 36

ndef.wifi.AuthenticationType (class in ndef),
37

ndef.wifi

ndef.wifi

ndef.wifi

ndef.wifi

.ChannelList (class in ndef), 49
.ConfigMethods (class in ndef), 38
.Credential (class in ndef), 38
.DeviceName (class in ndef), 39
ndef.wifi.EncryptionType (class in ndef), 39
ndef.wifi.KeyProvidedAutomatically (class
in ndef), 40
ndef.wifi.MacAddress (class in ndef), 40
ndef.wifi.Manufacturer (class in ndef), 40
.Mode1Name (class in ndef), 40
.ModelNumber (class in ndef), 41
.NegotiationChannel (class in ndef),

ndef.wifi
ndef.wifi
ndef.wifi

53
ndef.wifi.NetworkIndex (class in ndef), 41

ndef.wifi.NetworkKey (class in ndef), 41

ndef.wifi.NetworkKeyShareable (class in
ndef), 42

ndef.wifi.OutOfBandPassword (class in ndef),
42

ndef.wifi.PeerToPeerCapability (class in
ndef), 49

ndef.wifi.PeerToPeerDeviceInfo (class in
ndef), 50

ndef.wifi.PeerToPeerGrouplD (class in ndef),
53

ndef.wifi.PeerToPeerGroupInfo (class in
ndef), 51

ndef.wifi.PeerToPeerGroupInfo.Descriptor

(class in ndef), 52
ndef.wifi.PrimaryDeviceType (class in ndef),
44

ndef.wifi.RFBands (class in ndef), 44
ndef.wifi.SerialNumber (class in ndef), 45
ndef.wifi.SSID (class in ndef), 45
ndef.wifi.UUIDEnrollee (class in ndef), 46
ndef.wifi.UUIDRegistrar (class in ndef), 46
ndef.wifi.VendorExtension (class in ndef), 47
ndef.wifi.Versionl (class in ndef), 46
ndef.wifi.Version? (class in ndef), 47
ndef.wifi.WifiAllianceVendorExtension

(class in ndef), 47

O

operating_class (ndef.ndef.wifi. NegotiationChannel
attribute), 53

P

password_id (ndef-ndef-wifi.OutOfBandPassword at-
tribute), 43
primary_device_type
(ndef.ndef.wifi. PeerToPeerDevicelnfo
tribute), 50
primary_device_type
(ndef.ndef.wifi. PeerToPeerGrouplInfo.Descriptor
attribute), 52
public_key_hash (ndef-ndef-wifi. OutOfBandPassword
attribute), 43

at-

R

Record (class in ndef), 4
register_type () (ndef.Record class method), 6
resource (ndef.SmartposterRecord attribute), 9
resource_size (ndef.SmartposterRecord attribute),
10
resource_type (ndef.SmartposterRecord attribute),
10
RFC
RFC
REC

2046,5
2141,5
RFC 3986,5
REC 3987,8
role_capabilities
(ndef.BluetoothLowEnergyRecord
24
role_indication (ndef.ndef.wifi NegotiationChannel
attribute), 54

attribute),

S

secondary_device_type_list
(ndef.ndef.wifi. PeerToPeerDevicelnfo
tribute), 51

secondary_device_type_list
(ndef.ndef.wifi. PeerToPeerGrouplInfo.Descriptor
attribute), 52

at-

Index

69

ndeflib documentation, Release 0.3.3

SecondaryDeviceTypeList (class in ndef), 45

secure_connections_confirmation_value
(ndef.BluetoothLowEnergyRecord attribute),
24

secure_connections_random_value
(ndef.BluetoothLowEnergyRecord
25

security_manager_tk_value
(ndef.BluetoothLowEnergyRecord
24

service_class_list
(ndef.BluetoothEasyPairingRecord attribute),
20

set_attribute ()
method), 38

attribute),

attribute),

(ndef.ndef.wifi. Credential

type (ndef.SignatureRecord attribute), 54

type (ndef.SmartposterRecord attribute), 9
type (ndef.TextRecord attribute), 7

type (ndef.UriRecord attribute), 8

type (ndef.WifiPeerToPeerRecord attribute), 36
type (ndef.WifiSimple ConfigRecord attribute), 34

U

undefined_data_elements

(ndef.DevicelnformationRecord attribute),
10

unique_name (ndef.DevicelnformationRecord at-
tribute), 10

uri (ndef.UriRecord attribute), 8
UriRecord (class in ndef), 8

set_attribute () (ndef.ndef.wifi. WifiAllianceVendorExigusion ndef.ndef. bluetooth.ServiceClass attribute), 27

method), 48
set_attribute ()
method), 35
set_title () (ndef.SmartposterRecord method), 9
signature (ndef.SignatureRecord attribute), 55
signature_type (ndef.SignatureRecord attribute), 55
signature_uri (ndef.SignatureRecord attribute), 55
SignatureRecord (class in ndef), 54
simple_pairing_hash_192
(ndef.BluetoothEasyPairingRecord
20
simple_pairing_hash_256
(ndef.BluetoothEasyPairingRecord
21
simple_pairing randomizer_ 192
(ndef.BluetoothEasyPairingRecord
20
simple_pairing_randomizer_256
(ndef.BluetoothEasyPairingRecord
21
SmartposterRecord (class in ndef), 9
ssid (ndef.ndef.wifi.PeerToPeerGrouplD attribute), 53

T

text (ndef.TextRecord attribute), 7

TextRecord (class in ndef), 7

title (ndef.SmartposterRecord attribute), 9

titles (ndef.SmartposterRecord attribute), 9

type (ndef.BluetoothEasyPairingRecord attribute), 19
type (ndef.BluetoothLowEnergyRecord attribute), 21
type (ndef.DevicelnformationRecord attribute), 10
type (ndef.HandoverCarrierRecord attribute), 15
type (ndef.HandoverlnitiateRecord attribute), 15
type (ndef-HandoverMediationRecord attribute), 14
type (ndef.-HandoverRequestRecord attribute), 12
type (ndef.-HandoverSelectRecord attribute), 13
type (ndef.ndef.bluetooth.DeviceAddress attribute), 26
type (ndef.Record attribute), 5

attribute),

attribute),

attribute),

attribute),

(ndef. WifiSimpleConfigRecord

uuid_string (ndef.DevicelnformationRecord at-
tribute), 10

V

value (ndef-ndef-wifi, APChannel attribute), 36

value (ndef.ndef.wifi.AuthenticationType attribute), 37

value (ndef.ndef.wifi. ConfigMethods attribute), 38

value (ndef.ndef.wifi. DeviceName attribute), 39

value (ndef.ndef.wifi. EncryptionType attribute), 39

value (ndef.ndef.wifi. KeyProvidedAutomatically — at-
tribute), 40

value (ndef.ndef.-wifi. MacAddress attribute), 40

value (ndef.ndef.wifi. Manufacturer attribute), 40

value (ndef.ndef.wifi. ModelName attribute), 41

value (ndef-ndef.-wifi. ModelNumber attribute), 41

value (ndef.ndef.wifi. NetworkIndex attribute), 41

value (ndef.ndef.wifi. NetworkKey attribute), 41

value (ndef.ndef.wifi. NetworkKeyShareable attribute),
42

value (ndef-ndef.wifi. OutOfBandPassword attribute), 42

value (ndef-ndef.-wifi. PrimaryDeviceType attribute), 44

value (ndef.ndef.wifi. RFBands attribute), 45

value (ndef.ndef.wifi.SerialNumber attribute), 45

value (ndef.ndef.wifi.SSID attribute), 45

value (ndef.ndef.-wifi. UUIDEnrollee attribute), 46

value (ndef-ndef.-wifi. UUIDRegistrar attribute), 46

value (ndef.ndef.wifi.VendorExtension attribute), 47

value (ndef.ndef.wifi.Versionl attribute), 46

value (ndef.ndef.wifi.Version2 attribute), 47

value (ndef.SecondaryDeviceTypeList attribute), 45

vendor_name (ndef.DevicelnformationRecord at-
tribute), 10

version (ndef.SignatureRecord attribute), 55

version_info (ndef.HandoverlnitiateRecord at-
tribute), 15

version_info (ndef.HandoverMediationRecord at-
tribute), 14

70

Index

ndeflib documentation, Release 0.3.3

version_info (ndef.HandoverRequestRecord at-
tribute), 12

version_info (ndef.HandoverSelectRecord at-
tribute), 13

version_string (ndef.DevicelnformationRecord at-
tribute), 10

version_string (ndef.HandoverinitiateRecord at-
tribute), 15

version_string (ndef.-HandoverMediationRecord
attribute), 14

version_string (ndef.HandoverRequestRecord at-
tribute), 12

version_string (ndef.HandoverSelectRecord
attribute), 13

W

WifiPeerToPeerRecord (class in ndef), 35
WifiSimpleConfigRecord (class in ndef), 34

Index

71

	NDEF Decoding and Encoding
	Message Decoder
	Message Encoder
	Record Class

	Known Record Types
	Text Record
	URI Record
	Smartposter Record
	Device Information Record
	Connection Handover
	Bluetooth Secure Simple Pairing
	Wi-Fi Simple Configuration
	Signature Record

	Adding Private Records
	Record with no Payload
	Example Temperature Record
	Type Length Value Record

	Contributing
	Reporting issues
	Submitting patches
	Development tips

	License
	License text

	Python Module Index

